
Threat Hunting C2 Over DNS

> whoami

| Researcher @ Active CM

| Instructor @ AntiSyphon

| Building @ aionsec.ai

home | faanross.com

linkedin | faan rossouw

x | @faanross

github | @faanross

youtube | @faanross

> follow

Threat Hunting C2 Over DNS

Threat Hunting C2 Over DNS

“beyond the obvious”

Threat Hunting C2 Over DNS

“beyond the obvious”

what is it + why its awesome

Threat Hunting C2 Over DNS

“beyond the obvious”

what + how + why misused

Threat Hunting C2 Over DNS

“beyond the obvious”

if know what to look for trivial

to find… except when its not

Threat Hunting
what it is +

why it’s awesome

defensive security posture

two things come to mind

stop them from coming in

deal with them once

discovered,or revealed

themselves (extortion)

“assumed compromise”

“assumed compromise”
| Pragmatism >>> Idealism

| No way we can keep 100% of attackers out

| TH: If someone is inside, how would we find them?

The goal of TH is…

The goal of TH is…

Finding threats!

The goal of TH is…

Finding threats!

Right…?

Not so fast…

Let’s turn to guidance

from one of our elders

David J. Bianco
| ”Pyramid of Pain guy”

| High Druid of TH

| FWs: sqrrl, PEAK

Ask most people:

What is goal of Threat Hunting?

Ask most people:

What is goal of Threat Hunting?

Finding threats. (duh)

Ask most people:

What is goal of Threat Hunting?

Finding threats that evaded

existing detection.

That was his original
definition (sqrrl)

But it has since

evolved (PEAK)

What is goal of Threat Hunting?

What is goal of Threat Hunting?

"Improving overall security posture

through proactive searching.”

“It's about making the organization
fundamentally more secure through

the hunting process itself.”

How does it do this?

Goal: Improve Overall Security Posture

Goal: Improve Overall Security Posture

PEAK defines 5 Core Metrics

Goal: Improve Overall Security Posture

Goal: Improve Overall Security Posture

1. Incidents Discovered

Actual threats found

Goal: Improve Overall Security Posture

2. New Detections Created

Analytics/rules produced from hunts

Goal: Improve Overall Security Posture

3. Visibility Gaps Identified

Missing telemetry or blind spots discovered

Goal: Improve Overall Security Posture

4. Vulnerabilities/Misconfigurations Found

Security weaknesses identified

Goal: Improve Overall Security Posture

5. Techniques Hunted

Coverage across ATT&CK or similar framework

Hunt outputs feed back into the

system to strengthen it (detections,

documentation, future hypotheses)

A hunt that finds no incidents but

produces solid documentation and new

detections is still a successful hunt

Threat Hunting C2 Over DNS

“beyond the obvious”

Threat Hunting C2 Over DNS

“beyond the obvious”

C2 over DNS

The Domain Name System is fundamentally

a distributed, hierarchical database that

translates human-readable domain names

into machine-usable IP addresses

C2 Server C2 Agent

Auth
Nameserver

C2 Server C2 Agentimportant, here we imply
there is a direct connection
between C2 agent and server…

C2 Server C2 Agentmost often, the C2 agent
is communicating directly
with the local DNS resolver

C2 Server C2 Agent

C2 Server C2 Agent

DNS query | check-in | cache issue

C2 Server C2 Agent

DNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

C2 Server C2 Agent

DNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

DNS query | data | encoded subdomain

C2 Server C2 Agent

DNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

DNS query | data | encoded subdomain

DNS response | A | Complete

C2 Server C2 Agentnow, let’s talk more
about how data is sent
from agent -> server

C2 Server C2 Agent

DNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

DNS query | data | encoded subdomainencoded subdomain

DNS response | A | Complete

C2 Server C2 Agent

DNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

DNS query | data | encoded subdomainencoded subdomain

DNS response | A | Complete

C2 Server C2 Agent

DNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

DNS query | data | encoded subdomainencoded subdomain

DNS response | A | Complete

encoded subdomain
as data channel

the C2 agent sends a DNS query

it’s requesting to
resolve a domain

C2 Server C2 Agent

C2 Server C2 Agent

QNAME

www.aionsec.ai

C2 Server C2 Agent

QNAME

www.aionsec.ai

C2 Server C2 Agent

QNAME

www.aionsec.ai

RDATA

71.22.155.198

C2 Server C2 Agent

QNAME

www.aionsec.ai

RDATA

71.22.155.198

C2 Server C2 Agent

QNAME

www.aionsec.ai

RDATA

71.22.155.198

C2 Server C2 Agent

RDATA

71.22.155.198

QNAME

www.aionsec.ai

C2 Server C2 Agent

RDATA

71.22.155.198

QNAME

www.aionsec.ai

www.aionsec.ai

www.aionsec.ai

<subdomain>.aionsec.ai

<subdomain>

<subdomain>
-> 63 chars (“label”)
-> encoded data

<subdomain>
for ex dnscat2…

e7f1018ea0310f25bba0610936fd1cc2af

for ex dnscat2…

e7f1018ea0310f25bba0610936fd1cc2af

-> 63 chars capacity

-> 34 hex

e7f1 018e a0 310f25bba0610936fd1cc2af

e7f1 018e a0 310f25bba0610936fd1cc2af

-> Actual Payload

-> 24 hex chars

-> 12 bytes

12 bytes

capacity

12 bytes

total

16277 bytes

capacity

12 bytes

1356 queries

1356 subdomains

1356 unique FQDNs

1356 unique FQDNs
JUST FOR PIDs!

the problem is…
over time you will have
10ks, 100ks, 1Ms+
unique FQDNS associated
with an unknown domain

a few 100 max

so when you have
xj40-defderp.com
with 800ks FQDNs…

especially if

e7f1018ea0310f25bba0610936fd1cc2af

so, for us as threat hunters
look for high unique FQDN count
showing high-entropy subdomains

associated with an unknown domain

"It's practically a solved problem."

"It's practically a solved problem."

Except, it isn’t.

Two ways to use DNS as a covert channel

Two ways to use DNS as a covert channel

Two ways to use DNS as a covert channel

DNS is not high-bandwidth, don’t use it for that

Two ways to use DNS as a covert channel

encoded subdomains (exfil)

Two ways to use DNS as a covert channel

what we will look at today

But if I can’t transfer lots of data

what’s even the point of using it?

Start thinking “multi-modal”

what we will look at today

| TXT Record Abuse

| NULL Record Abuse

| CNAME, MX, SRV etc

| DNS Sandwich

| ID Field Abuse

| EDNS0

| Encrypted Channels

TXT Record Abuse

C2 Server C2 Agent

DNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

DNS query | data | encoded subdomainencoded subdomain

DNS response | A | Complete

C2 Server C2 Agent

DNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

C2 Server C2 AgentDNS query | check-in | cache issue

DNS response | A/AAAA/TXT | job T/F

C2 Server C2 AgentDNS query | ASKS FOR TXT RECORD

DNS response | A/AAAA/TXT | job T/F

C2 Server C2 AgentDNS query | ASKS FOR TXT RECORD

DNS response | PROVIDES THE TXT RECORD

C2 Server C2 AgentDNS query | ASKS FOR TXT RECORD

DNS response | PROVIDES THE TXT RECORD

The agent (typically) uses encoded

subdomains for data transfer

The server (typically) sends

data in the record itself

Currently the most popular

choice for this - TXT Records

Why is it popular?

Why is it popular?

| 255 char per string (A = 4 b | AAAA = 16 b)

| fairly common(-ish)

| multiple strings allowed

| domain verification - encoded blobs

Detection

| TXT records are not unusual

| But, a sudden deluge

| From a single ext host

| To a single int host (sus af)

Zeek to the rescue

We can query dns.log and ask:

Show me all domains where TXT queries were sent

to, the amount, and sort by descending order

cat dns.log |

zeek-cut qtype_name query |

awk '$1=="TXT" {print $2}' |

sort |

uniq -c |

sort -rn

cat dns.log |

zeek-cut qtype_name query |

awk '$1=="TXT" {print $2}' |

sort |

uniq -c |

sort -rn

4696 verify.timeserversync.com

89 _dmarc.company-domain.com

45 default._domainkey.google.com

12 _verification.microsoft.com

3 amazonses.com

1 mailer.subs.com

cat dns.log |

zeek-cut qtype_name query |

awk '$1=="TXT" {print $2}' |

sort |

uniq -c |

sort -rn

4696 verify.timeserversync.com

89 _dmarc.company-domain.com

45 default._domainkey.google.com

12 _verification.microsoft.com

3 amazonses.com

1 mailer.subs.com

NULL Record

we just established that:

| Agent -> Srv = Encoded subdomains

| Srv -> Agent = Actual record

C2 Server C2 AgentDNS query | ASKS FOR TXT RECORD

DNS response | PROVIDES THE TXT RECORD

C2 Server C2 AgentDNS query | ASKS FOR TXT RECORD

DNS response | PROVIDES THE TXT RECORDTXT

TXT

There are other options

NULL Record Abuse

| Defined in RFC 1035 (1987)

| RDATA can contain “anything at all”

| Only record with no imposed structure

| Placeholder that was “reserved” (future)

Why Attacker Love(d) It
| Raw binary data - No encoding overhead

| Up to 65KB per response!

| Started off real popular, but…

| No legitimate use so…

| Simple: Flag ALL instances of use

cat dns.log |

zeek-cut qtype_name query |

grep NULL

Zeek to the rescue (again)

CNAME, MX,
SRV… Oh my

CNAME, MX, SRV… Oh my

| There are many types (80 ideal, 10-15 real)

| Almost any record can be used (in principle)

| Does not mean all are equally suited

| And those that are - diff tradeoffs

| Capacity <-> Stealth

CNAME, MX, SRV… Oh my

| These all return a hostname

| So can be abused in much the same way as exfil

| <encoded-subdomain>.evil.com

| SRV = hostname + 3 numeric fields (+48 bits)

| Leads to same risk (high FQDN count + entropy)

The point remains

| Moving a lot of data has clear tells

| So know what to look for + look for it

| Inspect BOTH QNAME and RDATA for funky subs

| Zeek can detect most (bonus add ent)

| Add Zeek scripting and you’re at 99%

DNS Sandwich

So far we’ve considered 2 fields

QNAME for AGENT -> SERVER

RDATA for SERVER -> AGENT

But DNS has MANY fields!

Does not mean you can

use all of them to carry

data, some will break

But a few will be ignored,

or can carry random data

DNS Sandwich defines 2

fields that are ignored

To understand, let’s just

take a closer look at the

structure of a DNS packet

HEADER

QUESTION

ANSWER

HEADER

QUESTION

ANSWER

request

response

HEADER

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODE

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODEZ

Z Value

-> 3 bits reserved for future use

-> according to RFC - “must be 0”

-> most middlebox ignore (test!)

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODEZ

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODE

HEADER

QUESTION

ANSWER

HEADER

QUESTION

ANSWER

HEADER

QUESTION

QUESTION

QTYPE

QNAME

QCLASS

QTYPE

QNAME

QCLASSQCLASS

QCLASS

-> 16 bit int, 0 - 65535 options

-> it’s “always” IN(ternet) (1)

-> most middlebox ignore (test!)

DNS Sandwich

| So we have Z (4 bits) and QCLASS (16 bits)

| Not a lot of data but…

| You can manipulate since middleboxes ignore and

| Most traditional tools similiarly ignore it!

| Low bandwidth = useful for semantic signalling

Detecting DNS Sandwich
| Z should always be 0 (even with DNSSEC)

| QCLASS is 1 (99.999% of time)

| RARE: 3 (CH), 4 (HS), 254 or 255

| Zeek does not produce default events

| BUT, default parser exposes it!

Z field check

if (msg$Z != 0) → ALERT

QCLASS check

if (qclass != 1) → ALERT

ALERT: Unusual QCLASS 254! 192.168.1.142 ->
data.exfil-domain.com [NONE]

ALERT: Z field non-zero! 192.168.1.142 ->
beacon.malware-c2.net [Z=7]

ID Field
Misuse

HEADER

QUESTION

ANSWER

HEADER

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODE

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODE

Query ID (16 bits)

| randomly generated by client

| Allows query <-> response matching

| Mostly for Agent -> Server (Server has to echo)

| Also very limited, def not bulk (2 bytes)

So, what does it look like when

its normal, vs when it’s malicious?

Well, it depends…

Let’s simulate “a hunt”

cat dns.log | zeek-cut id.orig_h query |
sort | uniq -c | sort -rn

cat dns.log | zeek-cut id.orig_h query |
sort | uniq -c | sort -rn

cat dns.log | zeek-cut trans_id query |
grep "svc-update-cdn"

Zeek logs trans_id as decimal, not hex

cat dns.log | zeek-cut trans_id query |
grep "svc-update-cdn" | awk '{printf "%5d (0x%04X) →
%c%c\n", $1, $1, int($1/256), $1%256}'

PWNED!… Not so “random” looking, eh?

So, if we suspect ID Field abuse,

we can decode and inspect

BUT… We were lucky here

Why? Adversary “forgot” to

encrypt data before encoding

If they didn’t…

cat dns.log | zeek-cut trans_id query |
grep "svc-update-cdn" | awk '{printf "%5d (0x%04X) →
%c%c\n", $1, $1, int($1/256), $1%256}'

Non-printable bytes

| Are they encrypted, or random?

| No way to tell

This means that if an adversary

is using Field ID for exfil and

is encrypting prior to encoding,

there is no real way to detect it,

at least not directly…

Behavioural Detections
| Domain reputation/age - New? Known?

| Query frequency (ID Field LOW capacity)

| Timing patterns (DNS can still beacon)

| Resolver bypass… (The “Caching Conundrum”)

| No corresponding traffic (!!!)

EDNS0

Extension Mechanism for DNS
| 1987 - original DNS protocol limiting

| 1999 - new functionality required (larger, DNSSEC later)

| Cannot redesign, introduce backward-compatible hack

| Repurpose resource record and place in Additional

| Creates extensible FW that is pliable for new use cases

HEADER

QUESTION

ANSWER

HEADER

QUESTION

ANSWER

AUTHORITY

ADDITIONAL

HEADER

QUESTION

ANSWER

AUTHORITY

ADDITIONAL

HEADER

QUESTION

ANSWER

AUTHORITY

ADDITIONAL -> OPT Pseudo-record (ENDS0)

Why Adversaries Love It

| With EDNS0, Client says: I can handle 4096 bytes

| Server can then send a packet up to 4096 bytes

| Gives 3 extra fields (comb up to 4096 bytes)

| Very often ignored!

->

->

->

Good news:

-> EDNS0 is common (no blocking)

-> misuse of 3 fields easy to spot

Bad news… need custom parser

Encrypted
DNS

3 Versions of DNS Encryption

3 Versions of DNS Encryption

->

3 Versions of DNS Encryption

->

3 Versions of DNS Encryption

->

So, DoT and DoQ SHOULD be blocked

since most enterprises don’t need

to use it.

Besides, they skip local resolvers!

Any application using it might

complain, but will just revert

to plaintext DNS in any case.

But cannot block DoH - looks like HTTPS

But then question from
adversary’s POV becomes…

If it appears as HTTPS on
network, then why not just
use HTTPS - why constrain
oneself to DoH at all?

Is there a benefit?

Kinda, yeah.

“Resolver-as-Proxy”

“Resolver-as-Proxy”

| Victim sends encrypted DNS query to 1.1.1.1 or 8.8.8.8

| Resolver decrypts, sees query for cmd.evil.com

| Resolver contacts attacker's auth nameserver to resolve it

| Attacker’s server returns data in the response

| Resolver encrypts and sends back to victim

Now obvs, unlike DoT and DoQ,

we can’t just block DoH/HTTPS

But, we can block the destinations

Known, finite list of DoH resolvers

curl maintains a DoH providers list

If organization has internal

DNS working as it should, then

blocking these does not impact

any business functions… Do it!

Main
Takeaway

Understand that there are MANY

ways to misuse DNS beyond using

encoded subdomains for exfil

As we saw here, they are almost

always easy to detect, but the key

is - you have to look for them!

The specifics differ but if you:

-> Use Zeek + Blocklists (80%)

-> Add custom Zeek Scripts (95%)

-> Add custom parsers (99%)

Final thing to keep in mind…

Adversaries operate under a law

Inverse relationship between between

stealth and operational efficiency

The
Workshop

January 23 - Next Friday
| Build a Reflective Shellcode Loader C2 in Golang

| Brand new, focus on integrating EP action!

| Emphasis on design/patterns/architecture

| Lots (even more) value in “Agentic” revolution

| Sliding scale, $25 minimum - PLEASE JOIN!

www.faanross.com

www.aionsec.ai

thank you!

