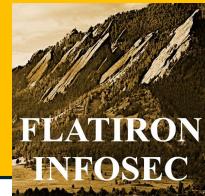



Numbering Systems

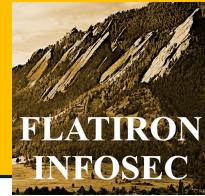
Language



**Hi Bob. I'm Alice.
I have a request for
you.**

**Hi Alice. What can
I help you with?**

Language Continued

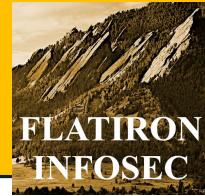


**Hola Bob. Soy Alicia.
Tengo una petición
para ti.**

**I'm sorry. I don't
understand what
you are saying.**

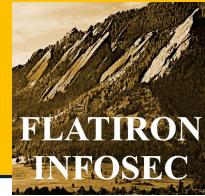
Why this matters

Language is important.

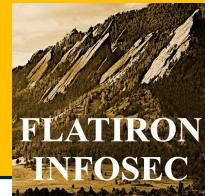

Computers speak a language we need to understand.

Important in a lot of areas, including:

- Cryptography
- Networking
- Forensics


We have an intro to networking class coming early 2026!

Numbers!

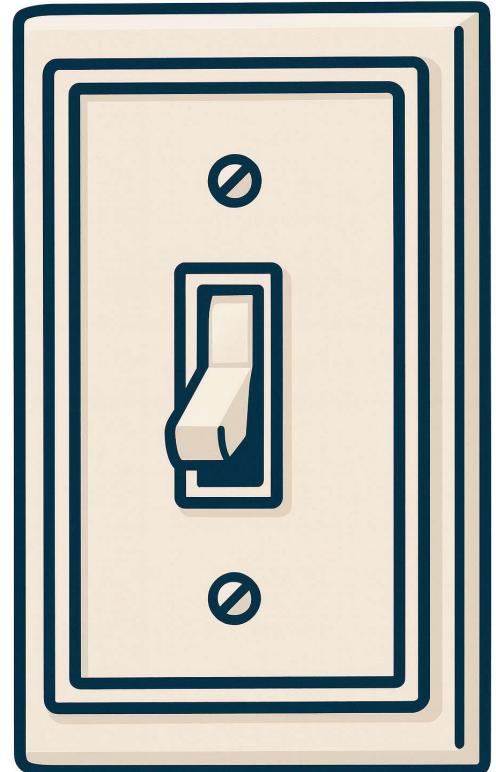

0101010110010100101010101
0101010101010101010110100
0101011010101011010100110
1100010101011101100101100
0100101100110011001010101

Computer Language - Binary

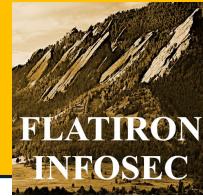
- Everything is ones and zeros to a computer
- Everything a computer does; every message, image, or click is just a pattern of 1s and 0s.
- Binary is the language of all digital life.
- Software consists of instructions to put context to the numbers

Binary

Binary is a number system different than human decimal numbers


Imagine binary as a series of light switches.

Each switch is either on or off.


ON = 1

OFF = 0

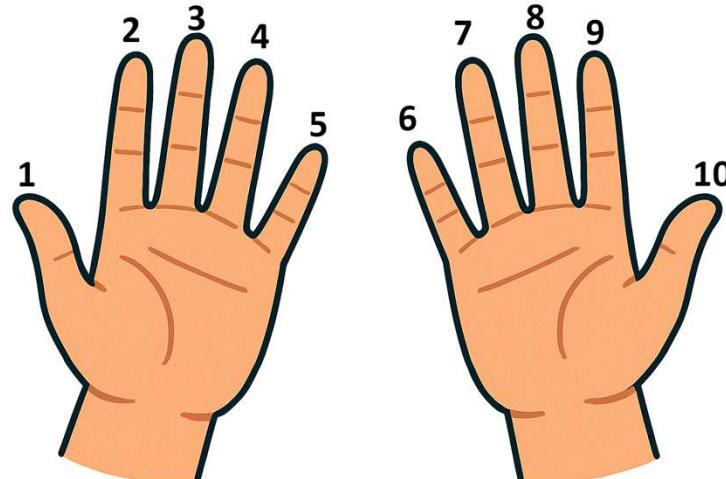
Computers only understand these two states.

Bits and Bytes

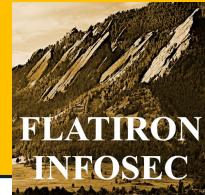
Bit - a single 1 or 0

- 2 possible values
- 0 or 1

Byte - eight 1s and 0s


- 256 possible values
- 0 - 255

Nibble - four 1s and 0s


- 16 possible values
- 0 - 15

Note: Computers start counting at zero
The lowest binary value is 0

Base 10 - Decimal system
Humanity's numbering system

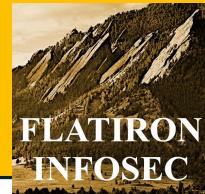
Numbering Systems - Decimal

Decimal

2 3 1

Base Ten

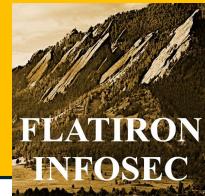
10^2 10^1 10^0


0-9

100 10 1

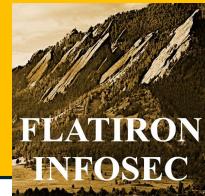
$$200 + 30 + 1 = 231$$

Numbering Systems - Binary

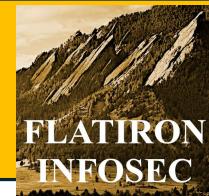


Binary	1	1	1	0	0	1	1	1
Base Two	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
0-1	128	64	32	16	8	4	2	1

$$128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231$$


Let's Practice!

Alice and Bob are ready to practice!
Are you?


Converting Bytes to Decimal

128	64	32	16	8	4	2	1	
0	1	0	1	1	0	1	1	
0	64	0	16	8	0	2	1	= 91
128	64	32	16	8	4	2	1	
1	0	0	0	1	1	0	0	
128	0	0	0	8	4	0	0	= 140
128	64	32	16	8	4	2	1	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	= 0

Converting Decimal to Bytes

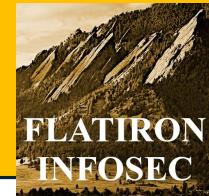
80 =

80 - 64 = 06

128	64	32	16	8	4	2	1
0	1	0	1	0	0	0	0
0	64	0	16	0	0	0	0

173 =

173 - 128 = 045


128	64	32	16	8	4	2	1
1	0	1	0	1	1	0	1
128	0	32	0	8	4	0	1

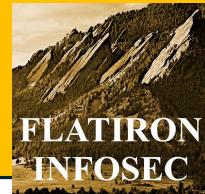
255 =

255 - 128 = 027

128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1
128	64	32	16	8	4	2	1

Converting Bytes to Decimal Again

128	64	32	16	8	4	2	1
0	1	0	1	0	0	0	0
0	64	0	16	0	0	= 0	80 0


128	64	32	16	8	4	2	1
1	0	1	0	1	1	0	1
128	0	32	0	8	4	= 0	173 1

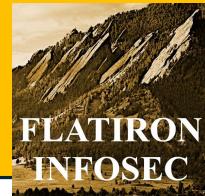
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1
128	64	32	16	8	4	= 2	255 1

YES!

Nibbles

8	4	2	1
1	0	1	1
8	0	2	1
8	4	2	1
0	0	0	0
0	0	0	0
8	4	2	1
1	1	1	1
8	4	2	1

16 values – 0 through 15

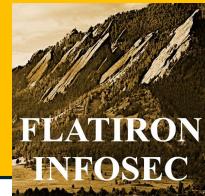

= 11 Hexadecimal

Problem!

= 0

Decimal has only 10 characters and hexadecimal has 16!

Hexadecimal



Base 16

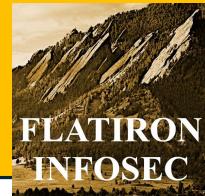
Decimal	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

Decimal	Hex
8	8
9	9
10	A
11	B
12	C
13	D
14	E
15	F

Nibbles & Hexadecimal

8	4	2	1
1	0	1	1
8	0	2	1
8	4	2	1
0	0	0	0
0	0	0	0
8	4	2	1
1	1	1	1
8	4	2	1

= B


= 0

= F

Decimal	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

Decimal	Hex
8	8
9	9
10	A
11	B
12	C
13	D
14	E
15	F

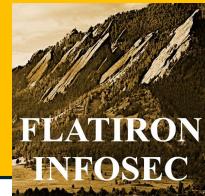
Converting Bytes to Hexadecimal

128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1
0	64	0	16	8	0	2	1

= 91

8	4	2	1
0	4	0	1

= 5


5

8	4	2	1
8	0	2	1

= 11

B

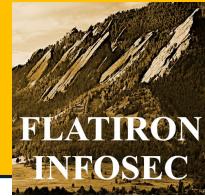
Converting Bytes to Hexadecimal

128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1
0	64	0	16	8	0	2	1

= 91

8	4	2	1
0	4	0	1

= 5


5

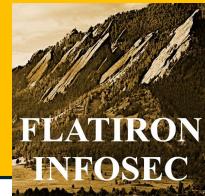
8	4	2	1
8	0	2	1

= 11

B

Hexadecimal to Byte

5B


8	4	2	1
0	1	0	1
0	4	0	1

= 5

8	4	2	1
1	0	1	1
8	0	2	1

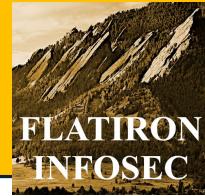
= 11

Hexadecimal to Byte

5

8	4	2	1
0	1	0	1
0	4	0	1

= 5


B

8	4	2	1
1	0	1	1
8	0	2	1

= 11

128	64	32	16	8	4	2	1
0	64	0	16	8	0	2	1
0	64	0	16	8	0	2	1

Numbering Systems!!!

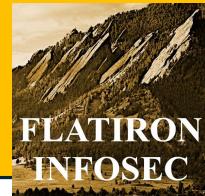
Binary

- Base 2

Decimal

- Base 10

Hexadecimal

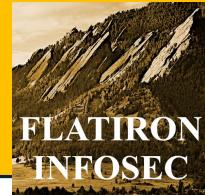

- Base 16

Byte

- Base 256

Larger Decimal Numbers

2 - byte values for numbers up to 65,535

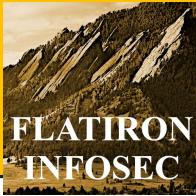

128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1
1	1	0	0	1	1	1	0	0	1	1	0	1	0	1	1
128	64	0	0	8	4	2	0	0	64	32	0	8	0	2	1

$$206 \times 256 = 52,736 \quad + \quad 107 \quad = \quad 52,843$$

32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
1	1	0	0	1	1	1	0	0	1	1	0	1	0	1	1
32768	16384	0	0	2048	1024	512	0	0	64	32	0	8	0	2	1

$$32768 + 16384 + 2048 + 1024 + 512 + 64 + 32 + 8 + 2 + 1 = 52,843$$

Even Larger Decimal Numbers



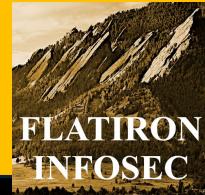
4-byte values for numbers up to 4,294,967,295

The takeaway is that every bit added to the string doubles the size of the numbers we can represent!

16-byte numbers have 340 undecillion unique numbers!

ASCII

American Standard Code for Information Interchange
Turns numbers into “printable characters”


1, 2, 3, 4, etc.

a, b, c, d, etc.

A, B, C, D, etc.

!, @, #, \$, etc.

Space bar, Esc key, Backspace, etc.

**Thanks for Joining Us
Don't forget we have a
Networking Class
coming in 2026!**