
FINDING SECRETS
WITH THE

JAVASCRIPT CONSOLE
WITH BB KING

CONSULTING PENTESTER, REPORT WRITER, INSTRUCTOR

@BBhacKing

https://www.antisyphontraining.com/instructor/bb-king/

MODERN WEBAPP
PENTESTING

I AND II

REPORTING FOR
PENTESTERS

BURP SUITE
WORKSHOP

• In-Person, Simulcast, and On Demand

• MWAP I at WWHF Mile High, February 2026

• https://wildwesthackinfest.com/

PLEASE PLAY
ALONG

• Visit a site of your choice in the browser of your choice.

• https://example.com/ is always a nice example.

• https://www.rfc-editor.org/rfc/rfc6761.html#section-6.5

• https://blackhillsinfosec.com/ is also a nice place.

• Other sites available, too. Choose a quiet one.

• Open the console. (tap F12)

• Play there as we go.

https://example.com/
https://example.com/
https://www.rfc-editor.org/rfc/rfc6761.html#section-6.5
https://www.rfc-editor.org/rfc/rfc6761.html#section-6.5
https://www.rfc-editor.org/rfc/rfc6761.html#section-6.5
https://www.rfc-editor.org/rfc/rfc6761.html#section-6.5
https://www.rfc-editor.org/rfc/rfc6761.html#section-6.5
https://www.rfc-editor.org/rfc/rfc6761.html#section-6.5
https://blackhillsinfosec.com/
https://blackhillsinfosec.com/

DEVELOPER TOOLS / CONSOLE / F12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors

Clicking on [Learn More]
may encourage learning.

DEVELOPER TOOLS / CONSOLE / F12

BUT FIRST: A BIT ABOUT JAVASCRIPT

STATEMENTS

“one or more lines that represent an action”

 - or -

“Something that ends with a semi-colon” (mostly)

You can omit the semi-colon, but don’t do that.

• Case-sensitive

• (Amount-of-)whitespace-insensitive

…so at least it’s not Python

owner = “John”;

let keep_going = true;

let use_var_instead = false;

https://web.dev/learn/javascript/introduction#statements

CONTROL FLOW

Conditionals: if / then (implied) / else

https://web.dev/learn/javascript/control-flow

COMPARISON OPERATORS

= assignment

== loose equality (same value? …maybe after coercion?)

=== strict equality (straight up same object.)

! not (negate the equalities: !==, !===)

> greater than

>= greater than or equal to

< less than

<= less than or equal to

BEATING UP ON JAVASCRIPT: AN INTRODUCTION

• Truthy and Falsy

• Formalized Truthiness

• Type coercion

• Coerces LHS and RHS to a common datatype, then
compares the results.

TRUTHINESS TYPE A
=== STRICT EQUALITY ===

“as found”

(no coercion)

a === b

“are these the same item?”

https://dorey.github.io/JavaScript-Equality-Table/

TRUTHINESS TYPE B
== LOOSE EQUALITY ==

“as interpreted”

(with coercion)

a == b

“do these have the same value?”

https://dorey.github.io/JavaScript-Equality-Table/

CONTEMPLATING
THE IFS

…with coercion.

https://dorey.github.io/JavaScript-Equality-Table/

COMPARISON-ISH OPERATORS

myWord.indexOf(‘meow’); // is ‘meow’ in that String?
 // Where?

currencies.includes(‘YEN’);
// is ‘YEN’ in this Array?
// True/False.

https://www.etsy.com/listing/1676528628

HOW THE AI WANTED ME TO SAY THAT

MYWORD = ‘HOMEOWNER’; CURRENCIES =
[‘USD’,’EUR’,’YEN’];

MYWORD.INDEXOF(‘MEOW’)
 IS ’MEOW’ IN THAT

STRING? WHERE?

CURRENCIES.INCLUDES(‘YEN’)
 IS ‘YEN’ IN THIS

ARRAY? T/F

PROTOTYPAL INHERITANCE
(SORRY I DON’T MAKE THE NAMES)

• A value inherits the properties and methods of its constructor…

• …even if it hasn’t been constructed yet.

• The String class has a method called toUpperCase()

• You can call this on a string literal (which is not a String).

PROTOTYPAL INHERITANCE
(STILL SORRY)

Handy for on-the-fly comparisons.

LOOPS
ARE WHERE

IT’S AT.

PROCESSING A “LIST” LIKE GRANDPA DID

for(start; stop; step){}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for#try_it

Canonical Use Case…

…Gets Clunky With Arrays.

PROCESSING ARRAYS WITHOUT INDEXING

for (var_name of iterable){}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of#try_it

perplexity.ai : Not Wrong

CONSOLE TRICKS - IDENTIFY LINKS

Put a blue outline around each link:

for(link of document.links) {

 link.style = "border: 5px solid blue";

}

CONSOLE TRICKS - COLLECT LINKS

Make a list: Links That Go Offsite

https://en.wikipedia.org/wiki/Main_Page

for(link of document.links) {

 if(link.href.indexOf('en.wikipedia') == -1){

 console.log(link.href);

 }

}

CONSOLE TRICKS - COLLECT IDENTIFIERS

Make a list: Each Image’s URL

const pic_urls = [];

for(pic of document.images){

 pic_urls.push(pic.src);

}

console.log(pic_urls);

CONSOLE TRICKS – YOUR TURN

Make a list:

All the URLs the current page pulls scripts from.

PROCESSING A “LIST” OF OBJECT PROPERTIES

for (var_name in obj_name){}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in#try_it

READING VARIABLES YOU DON’T KNOW ABOUT

Find variables and objects in the DOM

// Dump all string names and values
// Courtesy of Sean Verity, BHIS tester
for(prop in window) {
 if(typeof window[prop] === "string") {
 console.log(prop + ": " + window[prop]);
 }
}

// see also boolean, object, function, number

READING FROM SENSITIVE AREAS: COOKIES

This cookie has four cookies.

But … still just “cookie”

READING FROM SENSITIVE AREAS: COOKIES

This cookie has four cookies.

Use String.split('; ') to separate them. If you want to do that..

READING FROM SENSITIVE AREAS: DOM STORAGE

WHAT IF YOU DON’T KNOW THE NAME OF THE KEY?

localStorage.key(0); // This is a function(call).

localStorage.key(1); // It is not array[indexing].

localStorage.length; // …this looks promising…

LISTING JUST THE KEYS

for (let i = 0; i < localStorage.length; i++) {

 console.log(localStorage.key(i));

}

// Fancier, but the same:

Object.keys(localStorage).forEach(key => {

 console.log(key);

});

LISTING THE KEYS AND THE VALUES

for (let i = 0; i < localStorage.length; i++) {

 console.log(localStorage.getItem(localStorage.key(i)));

}

KEYS AND VALUES: EASIER

console.table(localStorage);

https://developer.mozilla.org/en-US/docs/Web/API/console/table_static

CHAINING FUNCTIONS NOT DISCUSSED

• JSON.parse() turns a string into a JSON object.

• Dot-notation is a way to access parts of (some) things.

CHAINING FUNCTIONS NOT DISCUSSED

These let us extract and decompose a JWT in just one statement!

split() breaks up a string…
…and array indexing is a thing.

atob() is base 64 decoding, for some reason.

JSON.parse() from the last slide.

And dot notation, too.

TO PLAY ALONG ON THE NEXT SLIDE
go to https://jwt.io/

Copy the JWT to your clipboard
In the console, while you’re on example.com, paste it in place of the word HERE in…
localStorage.setItem('jwt','HERE');

CHAINING FUNCTIONS: EXAMINE A JWT IN LOCAL STORAGE

MODERN WEBAPP
PENTESTING

I AND II

REPORTING FOR
PENTESTERS

BURP SUITE
WORKSHOP

• In-Person, Simulcast, and On Demand

• MWAP I at WWHF Mile High, February 2026

• https://wildwesthackinfest.com/

• https://www.antisyphontraining.com/instructor/bb-king/

• BB King | @BBhacKing

Questions?

THIS NEXT BIT DOESN’T FIT ANYWHERE
BUT IT’S KIND OF FUN, SO … “BONUS MATERIAL!”

IF YOU HATED ‘PROTOTYPAL INHERITANCE…’ YOU’LL LOVE…
HOISTING AND THE TEMPORAL DAD ZONE

• …It’s Temporal Dead Zone, but I like the typo-ed version better.

• JS lets you declare variables anywhere.

• So it is possible to use them before you declare them.

• Doing that on purpose is not smart. Be smart.

• “Hoisting” is “pretending you didn’t do that”

• Kind of. It does this by making a variable accessible anywhere in the scope where the variable is
declared, even before the declaration.

• The “Temporal Dead Zone” is a result of this silliness flexibility.

• It is: the ”time” between the start of a block and when a “hoisted” variable is initialized.

• [Learn More] https://jsrocks.org/2015/01/temporal-dead-zone-tdz-demystified

HOISTING AND THE TEMPORAL DAD ZONE

Initialized too late.
Global variable wins.
Probably bad.

Local Variable with var.
Hoisted but not Initialized.
Silently Undefined.
Probably not better.

Local Variable with let.
Hoisted but not Initialized.

Code won’t run.
Problem solved. Right?

JUST DO IT RIGHT.
THEN YOU DON’T HAVE TO REMEMBER ALL THAT.

Global Variable is
Shadowed by Local Variable

Global Variable is
Shadowed by Local Variable

Global Variable is
Shadowed by Local Variable

TAKEAWAY

Declare, define, then use.

Hoisting.
Temporal Dead Zone.
Tree Shaking.
Beautiful Soup.
List Comprehension.
LoDash.

Devs like to be obscure.

	Slide 1: Finding Secrets with the JavaScript Console
	Slide 2: Modern Webapp Pentesting I and II Reporting for Pentesters Burp Suite Workshop
	Slide 3: Please Play Along
	Slide 4: Developer Tools / Console / F12
	Slide 5: Developer Tools / Console / F12
	Slide 6: But First: A Bit About JavaScript
	Slide 7: Statements
	Slide 8: Control Flow
	Slide 9: Comparison Operators
	Slide 10: Beating Up on Javascript: An Introduction
	Slide 11: Truthiness Type A === Strict Equality ===
	Slide 12: Truthiness Type B == Loose Equality ==
	Slide 13: Contemplating the ifs
	Slide 14: Comparison-ish Operators
	Slide 15: How the AI Wanted Me to Say That
	Slide 16: Prototypal Inheritance (sorry I don’t make the names)
	Slide 17: Prototypal Inheritance (still sorry)
	Slide 18: Loops are where it’s At.
	Slide 19: Processing a “list” Like Grandpa Did for(start; stop; step){}
	Slide 20: Processing arrays without Indexing for (var_name of iterable){}
	Slide 21: Console Tricks - Identify Links
	Slide 22: Console Tricks - Collect Links
	Slide 23: Console Tricks - Collect Identifiers
	Slide 24: Console Tricks – Your Turn
	Slide 25: Processing a “list” of object Properties for (var_name in obj_name){}
	Slide 26: Reading Variables You Don’t Know About
	Slide 27: Reading from Sensitive Areas: Cookies
	Slide 28: Reading from Sensitive Areas: Cookies
	Slide 29: Reading from Sensitive Areas: DOM Storage
	Slide 30: What if You Don’t Know the Name of the Key?
	Slide 31: Listing Just the Keys
	Slide 32: Listing the Keys and the Values
	Slide 33: Keys and Values: Easier
	Slide 34: Chaining Functions Not Discussed
	Slide 35: Chaining Functions Not Discussed
	Slide 36: To Play Along on the next slide
	Slide 37: Chaining Functions: Examine a JWT in Local Storage
	Slide 38: Modern Webapp Pentesting I and II Reporting for Pentesters Burp Suite Workshop
	Slide 39
	Slide 40: This Next Bit Doesn’t Fit Anywhere
	Slide 41: If you hated ‘prototypal inheritance…’ you’ll love… Hoisting and the Temporal Dad Zone
	Slide 42: Hoisting and the Temporal Dad Zone
	Slide 43: Just Do It Right. Then You Don’t Have To Remember All That.
	Slide 44: Takeaway

