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what is a 
covert channel?



most elementary 
C2 setup
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so… about that  

covert channel?
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MANAGEMENT
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MANY THINGS 
(black box)

COMMUNICATION

C2 Agent

covert channel
specifics -> rest of the lecture



covert channel
| goal

| communicate (data) between server + agent 

| maximize operational efficiency + reliability 

| maximize stealth and network evasion
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goal as malware designers

optimize the 
relationship 
between stealth 
+ operational 
efficiency



today’s mantra:



| rules create constraints to help us learn 

| as we progress, this can limit us 

| discernment re: what rules can be bent



-> can HTTP carry encrypted data? <- 

-> can UDP be reliable? <- 

-> can a channel use multiple protocols? <-



a major paradigm shift 

occurred for me when 

learning about…



SUNBURST



SUNBURST
| well-documented 

| complex



SUNBURST
| network strategy 

| simplified



-> multi-stage, multi-protocol design 

-> strategically prioritizes stealth 

-> each stage: stealth <-> operational efficiency?

SUNBURST AGENT  
NETWORK COMMS

RISK + REWARD



following initial access…
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stage description

-> pre-communication
-> automated assessment

RISK + 
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0 pre-flight checks

stage description
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-> state-driven channel 

-> semantic meaning of response = signal



0 pre-flight checks

stage description

DNS1

-> high stealth 

-> low bandwidth 

-> vs 0: more freedom to assess

RISK + 
REWARD
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0 pre-flight checks

stage description

DNS1 HTTPS2

-> less stealth, high bandwidth 

-> gamut of typical C2 functions



0 pre-flight checks

stage description

DNS1 HTTPS2

-> in most cases, ends here 

-> but, for the chosen few…

RISK + 
REWARD



0 pre-flight checks

stage description

DNS1 HTTPS2

TEARDROP -> mod. CS Beacon3

RISK + 
REWARD



0 pre-flight checks

stage description

DNS1 HTTPS2

TEARDROP -> mod. CS Beacon3



0 pre-flight checks

stage description

DNS1 HTTPS2 TEARDROP -> mod. CS Beacon3



0 pre-flight checks

stage description

DNS1 HTTPS2 TEARDROP -> mod. CS Beacon3

-> less stealth -> sigs + aggression 

-> access CS’s post-exploit toolbox

FINAL + FULL EXPRESSION
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0 pre-flight checks

DNS

HTTPS

TEARDROP -> mod. CS Beacon

stage description

1

2

3



sunburst design

optimize the relationship between 
stealth + operational efficiency 
by using multi-stage, multi-
protocol design.



risk + reward
each transition to a higher stage 
is based on calculating risk + 
reward, using 4 degrees of 
variable stealth <-> operational 
efficiency



www.faanross.com/deep_dives/malware/sunburst

the 
story

technical guide WIP



feeling inspired



Let’s start with the  

most important part…





bobbejaan
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communication 
protocol



communication protocol
| HTTP, HTTPS, WS/S 

| DNS, DoH, DoT 

| ICMP, NTP, IRC, SSH

| RAW TCP, UDP, QUIC 

| TOR, RatNet, VPN 

| Write your own



The Skimask Principle

”conspiciously inconspicuous”



Sometimes the best 

way to not be noticed 

is to not try too  

hard to not be noticed



don’t think about  

hiding 

it’s more about  

blending in



for this reason (+ others) 

I like DNS and HTTPS



dns as  
covert  
channel





Server Agent



Server Agent



request



response

request





data

signal

data

signal



signal 
vs data













do you have 
the “stuff”?















DATA -> Meaning/Intention Explicit

































SIGNAL -> Meaning/Intention Implicit

| can be form of subterfuge  

| can be due to constraint



data
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data

signal

DNS
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data

signal

data

signalDNS

sunburst -> DNS Reply A Record IP

-> Different Ranges = Signals

21.0.0.0/8 - 30.0.0.0/8 -> Command 1 (enumerate)  

31.0.0.0/8 - 40.0.0.0/8 -> Command 2 (sleep 1 hr) 

41.0.0.0/8 - 50.0.0.0/8 -> Command 3 (HTTPS)



data

signal

data

signalDNS

DNS

sandwich

-> 2 fields we can co-opt 

-> let’s look at structure



data
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data

signalDNS
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Z



Z Value

-> 3 bits reserved for future use 

-> according to RFC - “must be 0” 

-> most middlebox ignore (test!)
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QCLASS

-> 16 bit int, 0 - 65535 options 

-> it’s “always” IN(ternet) (1) 

-> most middlebox ignore (test!)



data

signal

data

signalDNS

DNS

sandwich

-> Z gives us 8 options  

-> qClass gives us 65,536 

-> if we combine, < 0.5M
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data

signal

data

signalDNS

-> Limited, but options 

-> Data carried in ANSWER 

-> NULL Records 

-> CNAME/NS/MX Records 

-> TXT Records



data

signal

data

signalDNS

TXT

records

-> 255 chars per string 

-> 1+ strings/record (1kB+)  

-> direct encoding - blends in 

-> iodine, dns2tcp, dnscat2



data
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joker

screenmate



data

signal

data

signalDNS

-> Limited, but options 

-> TXT Records prob best 

-> 1000s of TXT sus af
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data

signal

data

signal

-> Similiar to SERVER -> AGENT 

-> Just lacking ANSWER 

-> We have Z + qClass 

-> Enough to work with

DNS
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data

signal

data

signal

This is where we encounter  

real constraints…

DNS



data

signal

data

signal

-> conventional MO is using encoded subdomains 

-> run `whoami` -> longtim 

-> HEX -> 6c6f6e6774696d 

-> 6c6f6e6774696d.derpistan.com 

-> max 63 chars, 30/1 chars output 

-> large data chunked over 1+ subdomains

DNS



data
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data

signal

data

signalDNS

-> largest known domains max 100s 

-> this technique generates 100s, 1000s, 10ks 

-> unknown domain + 1000s of garbled subdomains…



data

signal

data

signalDNS

-> encoded subdomains: use SPARINGLY 

-> Joff Thyer: Query ID (16 bits)



| DNS not designed for high-bandwidth data 

| Use as state machine (signals) 

| Use for: check-ins, enumerate, profile 

| RISK + REWARD -> Upgrade to HTTPS

DNS as Covert Channel



https as  
covert  
channel



C2 Server C2 Agent



C2 Server C2 Agent

-> keep 4-component model in mind 

-> model HTTPS using R+R cycle
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C2 Server C2 Agent

REQUEST



C2 Server C2 Agent

REQUEST - Heartbeat/Check-in
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No job (FALSE) or job (TRUE) | DATA

IF TRUE -> REQUEST



C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

POST body with encrypted JSON blob 



C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

POST body with encrypted JSON blob 

200 OK || 204 No Content



C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

POST body with encrypted JSON blob 

200 OK || 204 No Content

-> SLEEP = Delay (k) + Jitter (var) <- 



C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

POST body with encrypted JSON blob 

200 OK || 204 No Content

-> SLEEP = Delay (k) + Jitter (var) <- 

-> DISCONNECT (beacon) <- 



| Designed for high bandwidth (expected) 

| Designed to be encrypted (expected) 

| Ubiquitous + high-volume (like DNS) 

| Signal/Data in both directions -> Endless

HTTPS as Covert Channel



it seems like it can do 

everything DNS can, and more.



the question becomes…



DNS is STEALTHIER

| Less expected, less inspected 

| Ability to resolve locally  

| HTTPS headache - certificate and domain





-> Infrastructure Architecture  

-> Timing Characteristics  

-> Data Jitter/Padding 

-> Data Encoding/Obfuscation 

-> 3rd Party Service Integration 

-> Authentication + Access Control 

-> etc…

there’s more to covert channels…



tomorrow’s workshop
-> create DNS/HTTPS hybrid covert channel in Go 

-> COMPLETE OVERHAUL from Version 01 

-> Specifics AND transcendent value 

-> Idiomatic Go Design Architecture/Patterns



www.faanross.com



thank you!




