
let’s build a

covert C2 channel

| dad, husband, researcher

| trail running + MTB’ing

💜 Springbok rugby

post-exploit maldev

covert channels

offensive sec tooling

ai (for) red teaming

Faan Rossouw

-> faanross.com <- free content + courses

4 hr workshop
18 Sept

Tomorrow!
$25! JOIN US!

let’s build a

covert C2 channel

what is a
covert channel?

most elementary
C2 setup

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

operator

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

C2 Client C2 Server C2 Agent

internal

C2 Client C2 Server C2 Agent

internalexternal

C2 Client C2 Server

internalexternal

C2 Client C2 Server C2 Agent

so… about that

covert channel?

C2 Client C2 Server C2 Agent

C2 Server C2 Agent

C2 Server C2 Agent

C2 Server

C2 Server C2 Agent

C2 Server C2 Agent

C2 Server

ENDPOINT

C2 Agent

C2 Server

ENDPOINT

MANAGEMENT

C2 Agent

C2 Server

ENDPOINT

MANAGEMENT
COMMUNICATION

C2 Agent

C2 Server

ENDPOINT

MANAGEMENT
COMMUNICATION

MANY THINGS
(black box)

C2 Agent

C2 Server

ENDPOINT

MANAGEMENT
COMMUNICATION

MANY THINGS
(black box)

COMMUNICATION

C2 Agent

C2 Server

ENDPOINT

MANAGEMENT
COMMUNICATION

MANY THINGS
(black box)

COMMUNICATION

C2 Agent

covert channel

C2 Server

ENDPOINT

MANAGEMENT
COMMUNICATION

MANY THINGS
(black box)

COMMUNICATION

C2 Agent

covert channel
specifics -> rest of the lecture

covert channel
| goal

| communicate (data) between server + agent

| maximize operational efficiency + reliability

| maximize stealth and network evasion

stealth <-> operational efficiency

stealth <-> operational efficiency

↑ stealth ↓ operational efficiency

↑ operational efficiency ↓ stealth

goal as malware designers

optimize the
relationship
between stealth
+ operational
efficiency

goal as malware designers

optimize the
relationship
between stealth
+ operational
efficiency

today’s mantra:

| rules create constraints to help us learn

| as we progress, this can limit us

| discernment re: what rules can be bent

-> can HTTP carry encrypted data? <-

-> can UDP be reliable? <-

-> can a channel use multiple protocols? <-

a major paradigm shift

occurred for me when

learning about…

SUNBURST

SUNBURST
| well-documented

| complex

SUNBURST
| network strategy

| simplified

-> multi-stage, multi-protocol design

-> strategically prioritizes stealth

-> each stage: stealth <-> operational efficiency?

SUNBURST AGENT
NETWORK COMMS

RISK + REWARD

following initial access…

0 pre-flight checks

stage description

0 pre-flight checks

stage description

-> pre-communication
-> automated assessment

RISK +
REWARD

0 pre-flight checks

DNS

stage description

1

0 pre-flight checks

stage description

DNS1

0 pre-flight checks

stage description

DNS1

0 pre-flight checks

stage description

DNS1

-> state-driven channel

-> semantic meaning of response = signal

0 pre-flight checks

stage description

DNS1

-> high stealth

-> low bandwidth

-> vs 0: more freedom to assess

RISK +
REWARD

0 pre-flight checks

stage description

DNS1

HTTPS2

0 pre-flight checks

stage description

DNS1

HTTPS2

0 pre-flight checks

stage description

DNS1 HTTPS2

0 pre-flight checks

stage description

DNS1 HTTPS2

-> less stealth, high bandwidth

-> gamut of typical C2 functions

0 pre-flight checks

stage description

DNS1 HTTPS2

-> in most cases, ends here

-> but, for the chosen few…

RISK +
REWARD

0 pre-flight checks

stage description

DNS1 HTTPS2

TEARDROP -> mod. CS Beacon3

RISK +
REWARD

0 pre-flight checks

stage description

DNS1 HTTPS2

TEARDROP -> mod. CS Beacon3

0 pre-flight checks

stage description

DNS1 HTTPS2 TEARDROP -> mod. CS Beacon3

0 pre-flight checks

stage description

DNS1 HTTPS2 TEARDROP -> mod. CS Beacon3

-> less stealth -> sigs + aggression

-> access CS’s post-exploit toolbox

FINAL + FULL EXPRESSION

0 pre-flight checks

stage description

DNS1 HTTPS2 TEARDROP -> mod. CS Beacon3

TEARDROP -> mod. CS Beacon

stage description

3

0 pre-flight checks

DNS

HTTPS

TEARDROP -> mod. CS Beacon

stage description

1

2

3

sunburst design

optimize the relationship between
stealth + operational efficiency
by using multi-stage, multi-
protocol design.

risk + reward
each transition to a higher stage
is based on calculating risk +
reward, using 4 degrees of
variable stealth <-> operational
efficiency

www.faanross.com/deep_dives/malware/sunburst

the
story

technical guide WIP

feeling inspired

Let’s start with the

most important part…

bobbejaan

bobbejaan-spinnekop

bobbejaan-spinnekop

bobbejaan-spinnekop

communication
protocol

communication protocol
| HTTP, HTTPS, WS/S

| DNS, DoH, DoT

| ICMP, NTP, IRC, SSH

| RAW TCP, UDP, QUIC

| TOR, RatNet, VPN

| Write your own

The Skimask Principle

”conspiciously inconspicuous”

Sometimes the best

way to not be noticed

is to not try too

hard to not be noticed

don’t think about

hiding

it’s more about

blending in

for this reason (+ others)

I like DNS and HTTPS

dns as
covert
channel

Server Agent

Server Agent

request

response

request

data

signal

data

signal

signal
vs data

do you have
the “stuff”?

DATA -> Meaning/Intention Explicit

SIGNAL -> Meaning/Intention Implicit

| can be form of subterfuge

| can be due to constraint

data

signal

data

signal

data

signal

data

signal

data

signal

data

signal

DNS

data

signal

data

signalDNS

data

signal

data

signalDNS

data

signal

data

signalDNS

sunburst -> DNS Reply A Record IP

-> Different Ranges = Signals

21.0.0.0/8 - 30.0.0.0/8 -> Command 1 (enumerate)

31.0.0.0/8 - 40.0.0.0/8 -> Command 2 (sleep 1 hr)

41.0.0.0/8 - 50.0.0.0/8 -> Command 3 (HTTPS)

data

signal

data

signalDNS

DNS

sandwich

-> 2 fields we can co-opt

-> let’s look at structure

data

signal

data

signalDNS

request

response
DNS

request

response
DNS

HEADER

QUESTION

request

response
DNS

HEADER

QUESTION

request

response
DNS

HEADER

QUESTION

request

response
DNS

HEADER

QUESTION

ANSWER

request

response
DNS

HEADER

QUESTION

ANSWER

HEADER

QUESTION

ANSWER

HEADER

QUESTION

ANSWER

request

response

HEADER

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODE

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODEZ

Z

Z Value

-> 3 bits reserved for future use

-> according to RFC - “must be 0”

-> most middlebox ignore (test!)

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODEZ

Query ID (16 bits)

Question Count (16 bits)

Answer Count (16 bits)

NameServer Count (16 bits)

Additional Count (16 bits)

QR OPCODE AA TC RD RA Z RCODE

HEADER

QUESTION

ANSWER

HEADER

QUESTION

ANSWER

HEADER

QUESTION

QUESTION

QTYPE

QNAME

QCLASS

QTYPE

QNAME

QCLASSQCLASS

QCLASS

-> 16 bit int, 0 - 65535 options

-> it’s “always” IN(ternet) (1)

-> most middlebox ignore (test!)

data

signal

data

signalDNS

DNS

sandwich

-> Z gives us 8 options

-> qClass gives us 65,536

-> if we combine, < 0.5M

data

signal

data

signalDNS

data

signal

data

signalDNS

-> Limited, but options

-> Data carried in ANSWER

-> NULL Records

-> CNAME/NS/MX Records

-> TXT Records

data

signal

data

signalDNS

TXT

records

-> 255 chars per string

-> 1+ strings/record (1kB+)

-> direct encoding - blends in

-> iodine, dns2tcp, dnscat2

data

signal

data

signalDNS

joker

screenmate

data

signal

data

signalDNS

-> Limited, but options

-> TXT Records prob best

-> 1000s of TXT sus af

data

signal

data

signalDNS

data

signal

data

signalDNS

data

signal

data

signal

-> Similiar to SERVER -> AGENT

-> Just lacking ANSWER

-> We have Z + qClass

-> Enough to work with

DNS

data

signal

data

signalDNS

data

signal

data

signalDNS

data

signal

data

signal

This is where we encounter

real constraints…

DNS

data

signal

data

signal

-> conventional MO is using encoded subdomains

-> run `whoami` -> longtim

-> HEX -> 6c6f6e6774696d

-> 6c6f6e6774696d.derpistan.com

-> max 63 chars, 30/1 chars output

-> large data chunked over 1+ subdomains

DNS

data

signal

data

signalDNS

data

signal

data

signalDNS

-> largest known domains max 100s

-> this technique generates 100s, 1000s, 10ks

-> unknown domain + 1000s of garbled subdomains…

data

signal

data

signalDNS

-> encoded subdomains: use SPARINGLY

-> Joff Thyer: Query ID (16 bits)

| DNS not designed for high-bandwidth data

| Use as state machine (signals)

| Use for: check-ins, enumerate, profile

| RISK + REWARD -> Upgrade to HTTPS

DNS as Covert Channel

https as
covert
channel

C2 Server C2 Agent

C2 Server C2 Agent

-> keep 4-component model in mind

-> model HTTPS using R+R cycle

C2 Server C2 Agent

C2 Server C2 Agent

REQUEST

C2 Server C2 Agent

REQUEST - Heartbeat/Check-in

C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

RESPONSE

C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

IF TRUE -> REQUEST

C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

POST body with encrypted JSON blob

C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

POST body with encrypted JSON blob

200 OK || 204 No Content

C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

POST body with encrypted JSON blob

200 OK || 204 No Content

-> SLEEP = Delay (k) + Jitter (var) <-

C2 Server C2 Agent

Hit /ep using method GET (SIGNAL)

No job (FALSE) or job (TRUE) | DATA

POST body with encrypted JSON blob

200 OK || 204 No Content

-> SLEEP = Delay (k) + Jitter (var) <-

-> DISCONNECT (beacon) <-

| Designed for high bandwidth (expected)

| Designed to be encrypted (expected)

| Ubiquitous + high-volume (like DNS)

| Signal/Data in both directions -> Endless

HTTPS as Covert Channel

it seems like it can do

everything DNS can, and more.

the question becomes…

DNS is STEALTHIER

| Less expected, less inspected

| Ability to resolve locally

| HTTPS headache - certificate and domain

-> Infrastructure Architecture

-> Timing Characteristics

-> Data Jitter/Padding

-> Data Encoding/Obfuscation

-> 3rd Party Service Integration

-> Authentication + Access Control

-> etc…

there’s more to covert channels…

tomorrow’s workshop
-> create DNS/HTTPS hybrid covert channel in Go

-> COMPLETE OVERHAUL from Version 01

-> Specifics AND transcendent value

-> Idiomatic Go Design Architecture/Patterns

www.faanross.com

thank you!

