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Importance to Information Security

* Increasing Demand

 Skills and training deficit

* Human resource deficit

* A need to accelerate task completion
* Cost reduction
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Key Challenges and Opportunities

* We are in the hype cycle phase with Al and Natural Language
Processing (NLP)

* Multiple opportunities exist to apply data science/Al/ML to
information security problems

* Time series analysis
» Text classification
 Anomaly Detection
 Analyst ”’6" sense”

» Attacks against Al technology
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What is Artificial Intelligence?

» “The science and engineering of making
intelligent machines”

* The term was coined by Stanford Professor John
McCarthy in 1955

* Autonomous Systems can independently plan
and execute a sequence of steps to reach a
specific goal.

 Machine Learning (IVMIL) is a part of Al studying
how computers improve perception, knowledge,
and thinking by leveraging data.

* Deep Learning is the use of large multi-layer
neural networks organized in a human brain like
configuration.
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Historical Notes

* The field grew out of Neural Network research
circa 1959

 Bernard Widrow and Marcian Hoff at Stanford

* Developed ADALINE, and MADALINE
* Multiple ADAptive LINear Elements

« MADALINE solved a real-world problem of
“phone audio echo”
+ “Predicting the next bit value in a sequence”
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Von Neumann architecture impact

* Neural network research and application was viable

* Von Neumann'’s computer architecture dominated
 Serial architecture not well suited for neural nets
* Neural network research stagnated

* In 1982, research was reinvigorated by John Hopfield at
Caltech.
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Moore’s Law: The number of transistors on microchips doubles every two years [NV

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Historical Al Tech Timeline

* 1966: Eliza developed at MIT by Joseph Weizenbaum

* 1972: Statistically Trained Natural Language Processor at MIT

* 1997: Long Term Short Term (LSTM) model developed
Hochreiter and Schmidhuber

e 1999: Nvidia introduces their GPU

« 2000 - 2016: Multiple new Al models released

» IBM, Facebook/Meta, Google
* OpenAl funded in 2015

Ref: https://synthedia.substack.com/p/a-timeline-of-large-language-model
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Historical Timeline...

* 2017: Introduction of Transformer models at Google

* 2018: Google makes Tensor Flow Processors (TPUs) available
* Open Al publishes paper on GPT
* Google introduces BERT — an NLP trained by Google

* 2019: OpenAl releases GPT-2
* Baidu, Microsoft, Facebook, and AWS all competing

Ref: https://synthedia.substack.com/p/a-timeline-of-large-language-model
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Historical Timeline...

« 2022 - 2024: An explosive growth of AI-LLM deployments

BLACK HILLS
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Test scores of Al systems on various capabilities relative to human
performance

Within each domain, the initial performance of the Al is set to -100. Human performance is used as a baseline, set to zero.
When the Al's performance crosses the zero line, it scored more points than humans.

20 Reading comprehension with

unanswerable questions
Reading comprehension
Image recognition
Language understanding
Nuanced language interpretation
Handwriting recognition
Speech recognition
Predictive reasoning
General knowledge tests
Math problem-solving
Code generation

Complex reasoning

Human:performanceg

-20

-80

-100 The capability of each-Al systedn is-normalized-to an initial-pérformanee o#-1@0
I | I | | |
1998 2005 2010 2015 2020 2023
Data source: Kiela et al. (2023) OurWorldInData.org/artificial-intelligence | CC BY

Note: For each capability, the first year always shows a baseline of -100, even if better performance was recorded later that year.
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Performance on common exams
(percentile compared to human test-takers)
GPT-4 GPT-3.5
(2023) (2022)
Uniform Bar Exam 90th 10th
LSAT 88th 40th
SAT 97th 87th
GRE (Verbal) 99th 63rd
GRE (Quantitative) 80th 25th
US Biology Olympiad 99th 32nd
AP Calculus BC 51st 3rd
AP Chemistry 80th 34th
AP Macroeconomics 92nd 40th
AP Statistics 92nd Slst
SITUATIONAL AWARENESS | Leopold Aschenbrenner
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The State of AI-LLMs

“Current frontier models like Llama 3 are trained on the internet—and the internet is
mostly crap, like e-commerce or SEO or whatever.”

» “Many LLMs spend the vast majority of their training compute on this crap, rather than on
really high-quality data (e.g. reasoning chains of people working through difficult science

problems). “

» “Imagine if you could spend GPT-4-level compute on entirely extremely high-quality
data—it could be a much, much more capable model.”

https://situational-awareness.ai/

https://github.com/RiverGumSecurity/IntroAlLabs
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Accelerating Future Concepts

* Orders of Magnitude (OOMs) in pursuit of acceleration
* Best guesses as to upcoming changes that increase OOMs
» Estimates between 2023 - 2027

 Compute
* Likely a 2 — 3 OOM improvement in processing power, and
system scaling
* Algorithmic Efficiency

* Continuous improvement in algorithm design with likely 1 — 2
OOM improvement

* Unhobbling

* Creative ways of removing model limitations and improving
operational integration. Hard to quantify.

https://situational-awareness.ai/
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2023-2027 (Projection)

Compute Algorithmic Unhobbling
Efficiency

Onboarding problem

2-3 coms 1-3 coms ? 0oMs s cemptel

Using a computer

3-6 OOMs (best guess: ~5 OOMs) of base scaleup Chatbot to Agent

Based on public estimates.

SITUATIONAL AWARENESS | Leopold Aschenbrenner
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Acceleration Concepts Combined

* Today we have LLM’s that are “smart high schoolers”
* They ace the ACT, solve college level math, and accelerate tasks

 Adding the predicted Order of Magnitude improvements
together

* Predicted intelligence might transition over time:
* Smart High Schooler -> Knowledge driven PhD level researcher

https://github.com/RiverGumSecurity/IntroAlLabs
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Counting the OOMs
Model GPT-2 GPT-3 GPT-4 2027
(2019) (2020) (2023)
0 1 2 3 4 5 6 7 8 9 10 1
Intelligence Preschooler Elementary Smart Automated Al
Schooler High Schooler Researcher/Engineer?
I
I
N
Unhobbling I'<
= _—
—
Base ]
Chatbot
Agent
SITUATIONAL AWARENESS | Leopold Aschenbrenner
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The Future AGI on Researching Al!

“expect 100 million automated researchers each
working at 100x human speed not long after we
begin to be able to automate Al research”

“It’s strikingly plausible we’d go from AGlI to
superintelligence very quickly, perhaps in less
than one year.”

BLACK HILLS

https://situational-awareness.ai/ k
ﬂVER G U_M

20 . . )
[Some images created with the assistance of DALL ‘E -3] https://github.com/RiverGumSecurity/IntroAllabs =~ " —seciriry



https://github.com/RiverGumSecurity/IntroAILabs
https://situational-awareness.ai/

N
Superintelligence 8 : 0>5'. a: gi) :
\, 2 8! & o

< —~ 1 Q1 @) !

o O Q1! !

o | g : m: E\"

> : '-S 1 [

= Q! 0 o= b

.E q E_( f 1 .: 'l

NG ! " ,
80: é‘)) l" II El’
O § ) i
g I’ ' !
w ' w, I} !
%0} 1 ’ /
< Today 1 R /
— 1 7 ’ //
eY0) Automated ,' P ,
8 Al Researcher K Pl ///
Ay oSS
\ II, // P ’ . P 7’
AN
4
Time
SITUATIONAL AWARENESS | Leopold Aschenbrenner
https://situational-awareness.ai/ )k m
, St
https://github.com/RiverGumSecurity/IntroAlLabs bbbl

[Some images created with the assistance of DALL ‘E -3]


https://github.com/RiverGumSecurity/IntroAILabs
https://situational-awareness.ai/

Sources of AGI Capabilities

Idealized Models:
brute force,
green: benefits policy gradient,
Darwinian evolution targeting arbitrary goals/objectives

Selection/ blind/local search Ove r h ereis w h ere we rea | Iy
Evolution reward hacking h ave a | |g nme nt/ris k
emergent drives / mesa-optimization

challenges.

creativity

yellow: limitations

red: risks

Agent scaffolding combined with
RL in complex environments leads to
increasingly robust reasoning
and planning capabilties.

Long-range coherence makes LLMs
really useful for generating proposals
for brute-force searches. This also
makes policy gradient more effective.

We are focused here today.

As the model beomes more capable
of solving problems through
search and reasoning, human
imitation becomes less relevant.

RLHF is like selecting for
outputs humans approve of.
CoT gives a bit of reasoning

ability, though not robust

enough to be useful.

Will humans matter at
all when we get here?

We are here

Base LLMs are trained
solely to predict text Idealized Model:
optimal sequential

Idealized Model: decision making

Kolmogorov complexity /

universal induction  Compression/ Reasoning/
Imitation Planning
human common sense complex problem solving
factual knowldge competent OOD generalization
legibility safe exploration
reliance on finite data corrigibility (maybe)
poor OOD generalization scheming
plausible hallucinations instrumental convergence
imitation of harmful data treacherous turns

https://x.com/RogerGrosse/status/1758506017791279440
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Data Science in Cyber Security

 Enhanced threat detection through ML/AI and statistical
analysis
* Efficient detection, monitoring, and incident response

» Ex:Risk Based Alerting (RBA) using aggregate risk scores to reduce
alert fatigue

* Increased understanding of attack vectors

» Data science tools and techniques provide enhanced views of attack
patterns improving analyst understanding

* Improved Security Policies
* Understanding the underlying data informs better decision making

https://github.com/RiverGumSecurity/IntroAlLabs
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Al/ML/Data Science and Hackers
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Machine Learning

Let’s start by telling the truth: machines don’t learn.”
- Burkov, Andriy. The Hundred-Page Machine Learning Book (p. xvii). Andriy Burkov

Data and Predictions

y=mx+b

BLACK HILLS

https://github.com/RiverGumSecurity/IntroAlLabs



https://github.com/RiverGumSecurity/IntroAILabs

Machine Learning
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Supervised Machine Learning

* Uses labeled dataset to where each input data point has the
corresponding correct output (also known as a label)

* Training process is where the algorithm “learns” to map
inputs to the most efficient outputs by adjusting parameter
values

* Training process evaluated by a validation data set scoring
metrics used determine model performance

* Trained model then used to make predictions on unseen data
* Data has to match expected parameters

* Cybersecurity examples:
* Phishing vs. non-phishing emails
* Malware detection

https://github.com/RiverGumSecurity/IntroAlLabs
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Unsupervised Machine Learning

* Primary goal is to discover hidden patterns and structures in
the dataset

* Uses unlabeled data with no predefined outcomes

» Useful for clustering, dimensionality reduction, and anomaly
detection

* Cyber security examples:
* Network security analysis
* Fraud detection

https://github.com/RiverGumSecurity/IntroAlLabs
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Neural Network Deep Neural Network
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Neural Networks

 Inspired by the structure of the human brain

* Classic structure of a neural network includes an input layer,
hidden layers, and an output layer

* Training involves adjusting the weights of connections
between neurons

* Deep learning is a type of neural network that typically
involves three or more layers of neurons

https://github.com/RiverGumSecurity/IntroAlLabs
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Large Language Models

» Al system trained on vast amounts of text data on on huge
computing clusters

» Typically based on transformer models with billions of
parameters

* Can perform various tasks like translation, summarization,
question-answering, and text generation

» Uses “self-supervised” learning on diverse text sources to
capture language patterns and context

https://github.com/RiverGumSecurity/IntroAlLabs
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Prompt Engineering

* Practice of designing effective prompts to guide large
language models in generating relevant and useful outputs

* Properly crafted prompts can significantly improve the quality
of a model's response

* Techniques include iterative refinement, balancing prompt
detail, and using instructional, contextual, or open-ended
prompts

https://github.com/RiverGumSecurity/IntroAlLabs
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LLM Terminology

* Token: Unit of text that the model uses to process and
generate language

 Words, word-stems, characters, punctuation
* Context Window: maximum amount of text (measured in

tokens) that the model can consider at one time when
processing or generating language

* Agent: system or entity that is capable of performing tasks
autonomously

https://github.com/RiverGumSecurity/IntroAlLabs
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“fabric” — Augmenting Humans using Al

* Daniel Miessler -> helping us integrate Al
* https://github.com/danielmiessler/fabric

* Mission statement: “Human Flourishing via Al Augmentation”
» Think of “fabric” as a front-end helper to LLM interaction
* Magnifying / enhancing the human elements NOT replacing!

* A human driven approach in his workflow
 What problems are we trying to solve?
* Some of these human challenges:

* Too much content to ingest
* Forgetting content watched
 How do I focus on the right take home points from content?

https://github.com/RiverGumSecurity/IntroAlLabs
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https://www.antisyphontraining.com/course/ai-for-
cybersecurity-professionals-with-joff-thyer-and-derek-banks/

‘&SANTISYPHUN COURSE CATALOG LIVE TRAININGv ON-DEMANDv WHO WE AREv CERTIFICATION Q= 8

CYBER RANGE CONTACT

Al for Cybersecurity Professionals Overview
with Joff Thyer and Derek Banks

e Support from expert instructors
e Includes certificate of completion

ANTISYPHON

O

PROFESSIONALS

JOFF THYER
DEREK BANKS
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https://www.antisyphontraining.com/course/ai-for-cybersecurity-professionals-with-joff-thyer-and-derek-banks/

Thanks!

» Twitter/X:
* @joff_Thyer — Malware Pit Boss / Chieflntern
* @Oxderuke — SOC Technology Wrangler

e Linkedln
* https://www.linkedin.com/in/joffthyer/
* https://www.linkedin.com/in/derek-banks-117b0012/
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