
DevSecOps

Will begin shortly …

Essentials

Andrew Krug
andrewkrug@gmail.com
@andrewkrug

Head of
Security
Advocacy @
Datadog

Antisiphon
Instructor for
Cloud Security

AUDIENCE
WARNING

This presentation is full of jargon

Devops
A movement that began in about 2007

Dev ops

Something
was missing

The agile software movement

● Speedy Delivery

● Customer Focus

● Tight small feedback loops

Two Movements

The DevOps Movement

● Value automation

● Speed delivery

● Integrate continuous

—Charles Goodhart

“When a measure
becomes a target, it
ceases to be a good

measure.”

Security Development

We’ve already seen this …

Purple teaming is a lot of the same
within the mico-chasm of security

● Blue teams and red teams
working together

● Accelerating feedback

● Using empathy

Phases of DevSecops

Plan Develop Build

Test Release Operate

Observe

Reality of DevSecops

Plan

Develop

Build

Test Release

Operate

Observe

4 Truths of
DevSecOps

There is a massive
benefit to development
and security working
together

Culture is more
important than
technology

The wrong technology
is worse than no
technology

You can’t spell DevSecOps without DevOps

What’s the biggest bang for the
$$$ and time?

Take a maturity approach

time.now() time.now() + timedelta(months=6) between now
and python4

beginner expert

Trying to do
everything can

be a bit
overwhelming

Credit: https://bit.ly/4aEtjzTHow to 10X Your Security by Clint Gibler 2020

This is what we’re all still
trying to do

This is what we’re all still
trying to do

We’re doing at Cloud
Scale

This is what we’re all still
trying to do

Trying to do it at Cloud
Scale

And d
o it

 w
ell!

Secure defaults

Targeting Vulns by Complexity / Class

Increasing Vuln Complexity

Easy Medium Hard
Automated tools Bug bounty Pen tests Runtime monitoring

Credit: https://bit.ly/4aEtjzT

Pre-Prod

Release

Operate
Prod

Testing

Observe

SAST
DAST
IAST
RASP
SCA

Vulnerability
Management

Runtime
Security

Incident
Response

Logs
Metrics
Monitoring

Vulnerability
Management

Continuous
Scanning
Drift Detection

Pre-Prod

Release

Operate
Prod

Testing

Observe

SAST
DAST
IAST
RASP
SCA

Vulnerability
Management

Runtime
Security

Incident
Response

Logs
Metrics
Monitoring

Vulnerability
Management

Continuous
Scanning
Drift Detection

Table Stakes

Asset Inventory

Vulnerability Management

● In production and
pre-production

Continuous Scanning

● In code
● Cloud

Asset
Inventory

Who you gonna call?

Modern Applications are Complex

Code
Tagging

Data lakes

Owner
Environment
Service

.inventory

Keep owner info
close to the source

Source code custody
chains if possible

Cloud

Inventory data should be an
accelerator for triage and
remediation

Vulnerability Impacted?

Are my volumes encrypted?
Do I have that XYZ in my cloud?
Does that law apply to this region?

What do I
need to
change?

Who can
change it?

In code inventory metadata

https://bit.ly/3J1cPG6

Cloud Inventory

Powered by tags Stored in a
data-lake

Searchable
outside
of your

production
account

Cloud Inventory

Powered by tags Stored in a
data-lake

Searchable
outside
of your

production
account

Cloud Inventory | Why
non-production?

Searchable
outside

of your production
accountInventory systems can DoS Production

Open Source Inventory Solutions

https://github.com/lyft/cartography

Purpose built for security
inquiry

Uses relationships to map
relative risk

This is one area where a
commercial option could
be better / more reliable

What is the best use of your AppSec team’s
limited time?

Vulnerability
Management

Pre-Prod and In Prod

Remember the good old days?

Scheduled task:

yum update -y

apt-get update && apt-get upgrade -y

wuauclt.exe /updatenow
shutdown -r -t 0

Vulnerability Management
Into the great beyond

Vulnerabilities can be:

● Third party dependencies

● Indirect third party
dependencies

● Engineering vulnerability
(your code)

● OS vulnerability

● Cloud provider vulnerability

● Orchestrator vulnerability

Vulnerability Management
Into the great beyond

Vulnerabilities can be:

● Third party dependencies

● Indirect third party
dependencies

● Engineering vulnerability
(your code)

● OS vulnerability

● Cloud provider vulnerability

● Orchestrator vulnerability

Dependency Resolution
SBOM saves the day?

Executive order 14028 calls for all software
vendors to the US government to list the
components that they used to create their
products with software bill of materials
(SBOM) documentation by September 2023.

Interest is growing

Generating SBOM is easy

https://github.com/anchore/syft

Knowing what to do with it is a
challenge

SPDX format

Some projects like
Kubernetes make
these available

SPDX => OSV to use free databases

https://github.com/spdx/spdx-to-osvhttps://ossf.github.io/osv-schema

https://security.googleblog.com/2022/06/sbom-in-action-finding-vulnerabilities.html

Issues with plain SBOM

Some can be quite large

○ How do you triage an
SBOM for a container
image bigger than 1GB

High rate of false positive / low
fidelity alerts

Vendors triage so you don’t have to

Enter SCA
(Software Composition Analysis)

● SBOM Informed but not
SBOM driven

● Built in workflow and
prioritization

● Groups findings to resolve in
batch

Attributes of great SCA

Prioritization Workflow

Has
Vuln

Known
Exploit

Actively
Attacked

Se
ve

ri
ty

Time

Yes

Yes

Yes

No

No

No

Goal is always to stop bugs
pre-production …

Sometimes they make it there
over time or bypass tooling

Continuous
Scanning

Code and Cloud

SAST, DAST, and IAST
 Oh my!!!

SAST - runs against code to
detect known bad patterns in
code using signatures

DAST - spin up the app and test it
while it’s running

IAST - whitebox version of DAST
with specific cases

Less Complex

More Complex

Please don’t DIY this stuff

Static Analysis - Rolling Your Own
● Approach: Source code -> [Parser] -> AST

○ Lang-specific parser, ANTLR, (best) multi-lang parser semantic,
bblfsh

Credit: https://bit.ly/4aEtjzT

https://github.com/antlr/antlr4
https://github.com/github/semantic/
https://github.com/bblfsh/bblfshd
https://github.com/bblfsh/bblfshd

OSS Solutions | SAST

DAST Testing

DAST is a “Black-Box” testing, can
find security vulnerabilities and
weaknesses in a running application
by injecting malicious payloads to
identify potential flaws that allow for
attacks like SQL injections or
cross-site scripting (XSS), etc.

DAST Testing https://www.zaproxy.org/

DAST in a pipeline

https://github.com/Grunny/zap-cli

IAST – Still emerging

IAST (interactive application security
testing) is an application security testing
method that tests the application while
the app is run by an automated test,
human tester, or any activity “interacting”
with the application functionality.

IAST – OSS

CSPM
Cloud Security Posture Management

Hunt down misconfigurations
before they are exploited

Public buckets, open security
groups etc

Two types of CSPM

Point and shoot

● Prowler OSS

https://github.com/prowler-cloud/prowler

● ScoutSuite

https://github.com/nccgroup/ScoutSuite

Continuous Scanning

● AWS Config
● Point and shoots with cron
● Cloud Custodian
● Commercial offerings like

Datadog CSM

https://github.com/prowler-cloud/prowler

Favorite OSS CSPM

The next generation of CSPM

More context for dynamic criticality

Unencrypted
Exposed
Service B

Workload A Low
Criticality

The next generation of CSPM

More context for dynamic criticality

Unencrypted
Exposed
Service B

Workload A Low
Criticality

Unencrypted
Exposed
Service B

Workload A High
Criticality

Public Load
Balancer

The trends

Tool Sprawl
More tools
providing

findings and
signals than

ever

Triage Pain
Engineers don’t
know where to

start

Blind Spots
Most engineers

don’t get
metrics from

security tooling

Silos
Communication

and empathy
still needs work

Putting it all together

Github

Event Event

SBOM

DAST

SAST

Event
Release to
Production

Putting it all together

Github

Event Event

SBOM

DAST

SAST

Event
Release to
Production

Putting it all together

Event

Event

SBOM

DAST

SAST

Event

Release to
Production

Github

Event

E
ve

n
t

Emit Metrics
Notify Teams

Security Pipeline

Event

Putting it all together

Event

Event

SBOM

DAST

SAST

Event

Release to
Production

Github

Event

E
ve

n
t

Emit Metrics
Notify Teams

Security Pipeline

Event

Block
Release?

Rules of the AppSec Pipeline

1. Tight feedback loops to teams
a. Slack
b. Pull request comments
c. Commercial Product

2. Guidance not gates by default

3. Gates when failure is not an option
as defined by risk assessment

4. Emit metrics as every stage to
define maturity

Good and bad metrics

Good:

Number of vulns by criticality

Time to resolve vulns

Ignored vulns

Good and bad metrics

Less Good:

Average age of bug

Oldest vuln still in production

Total number of findings

Add more tools as desired

Terraform Linter - https://github.com/terraform-linters/tflint

IAMSpy - https://github.com/WithSecureLabs/IAMSpy

CFNLint - https://github.com/aws-cloudformation/cfn-lint

If you liked this or you didn’t

https://forms.gle/mTtGgd2yaqu1XnKX7

Brief Survey

Thank you

