

Meet the Speaker: John Stigerwalt (Stigs)

 • Experienced IT Professional

• Specialist in Red Teaming

• Owner, White Knight Labs

• Passionate about Cybersecurity

• Adventurer and Lifelong Learner

• Skydiving, Running, Father

White Knight Labs – Our Story

 • Who We Are

• Our Mission

• Our Expertise

• What makes us different (Greg and John)

Agenda: What We’ll Cover

• AV Bypassing

• Compiler Overview

• Compiler Examples

Understanding Compilers: An Essential
Skill in Malware Development

 The Basics
• Malware developers must possess a deep understanding of compilers.
• Compilers are fundamental tools in crafting effective and evasive malware.

Compiler Basics
• Compilers translate high-level programming languages into machine code.
• Understanding compiler behavior enables precise control over code generation.

Compiler Optimization
• Optimized code runs efficiently and is less conspicuous.
• Malware optimized for performance can execute faster, reducing detection windows.

Understanding Compilers: An Essential
Skill in Malware Development

 Tailoring for Target Systems
• Different compilers and compiler options produce varying binary outputs.
• Adapting code to specific systems can evade signature-based detection.

Avoiding Suspicion
• Malware developers must blend in with legitimate software.
• Understanding compilers helps create malware that appears benign.

Bypassing AV/EDR: A Two-Fold Approach

Static Detection:

• Static detection refers to security measures that analyze code without executing it.

Here's how we bypass it:

• Code Obfuscation: Hiding the true intent of code.

• Polymorphic Code: Generating unique code variants.

• Signature Evasion: Avoiding known threat signatures.

Bypassing AV/EDR: A Two-Fold Approach

 Dynamic Detection Bypass:

• Dynamic detection involves analyzing code during execution.

Here's our approach to bypassing dynamic detection:

• API Unhooking: Disrupting the hooks placed on system calls.

• API Hashing: Masking the API calls to avoid detection.

• Indirect/Direct System Calls: Employing alternative methods to invoke system calls.

What If: Bypassing AV/EDR with Compliers

 What If:

• Imagine a scenario where we could turn compilers, the very tools used for code creation, into

our allies for bypassing AV/EDR systems. What if we told you that this intriguing concept is

not just hypothetical?

The Key Question:

• Can Compilers Reshape the Game?

The Hard Truth

 • Who here has Git Cloned a project that has a Visual Studio project or make file?

• Who here has actually looked at compiler flags from the public projects?

• Who here has changed build tactics with public projects to help prevent detections?

• Who here has built engagement payloads with the same compiler for the last 3 years?

Setting up the Test Environment

 Before we dive into the fascinating world of compiler tactics, let's ensure we have a solid test

environment in place. We'll be using a C++ code called 'GregsbestFriend' as a test case.

Key Components:

• Preparing the Test Environment

• Understanding 'GregsbestFriend'

• Testing Parameters and Compilers

• Payloads (Metasploit Calc & Cobalt Strike C2)

Meet GregsBestFriend: A Compilers Ally

 Introduction:

Allow us to introduce you to 'GregsBestFriend,' a versatile tool in our arsenal for bypassing

AV/EDR systems. It's more than just code; it's a strategy.

Key Points:

Purpose: Bypassing AV/EDR Systems

Compiler Diversity: Breaking Away from the Norm

Results: Varied Executables for Enhanced Stealth

GregsBestFriend Codebase

Online Testing Platforms

 To evaluate the effectiveness of GregsBestFriend, we'll start by uploading it to online testing

platforms. These platforms provide valuable insights into potential detections.

Testing Platforms:

• https://antiscan.me/

• https://kleenscan.com/

• https://www.virustotal.com

AV/EDR Systems Testing

 In addition to online testing platforms, we'll be subjecting GregsBestFriend to the scrutiny of

three reputable AV/EDR (Antivirus/Endpoint Detection and Response) systems.

AV/EDR Systems:

• Sophos

• SentinelOne

• CrowdStrike

Complier Battle: GNU vs MSVC

GNU Compiler (gcc/g++)

• Open-source and cross-platform

• Extensive language support

• Optimization capabilities

• Code size is larger

MSVC (Microsoft Visual C++) Compiler

• Integrated with Visual Studio

• Windows-centric

• Strong Windows API integration

• Code size is smaller

In our exploration of compiler tactics, let's delve into the battle between GNU and MSVC (Microsoft
Visual C++) compilers. We'll analyze the strengths and differences of these two giants.

Compiler Overview: CL.exe (Microsoft Visual C++ Compiler)

 • Compiler Type: Microsoft's C/C++ compiler.

• Purpose: Used for compiling C and C++ source code into executable programs on Windows.

• Development Environment: Part of Microsoft Visual Studio, but also available as a standalone

tool.

• Optimization: Provides various optimization options for generating efficient code.

Build Command Example:
Cl.exe gregsbestfriend.cpp

Base Cl.exe (MSVC) Detections

Base Cl.exe (MSVC) Detections - Kleenscan

Compiler Overview: Clang++ (LLVM)

• Compiler Type: Clang, a C/C++ compiler front end for the LLVM project.

• Purpose: Compiles C and C++ source code into executables while emphasizing safety and

performance.

• Development Environment: Part of the LLVM project; can be used in various IDEs and on the

command line.

• Optimization: Offers advanced optimization options to generate efficient code.

Clang++.exe gregsbestfriend.cpp gregsbestfriend.exe

Base Clang++ (LLVM) Detections

Base Clang++ (LLVM) Detections - Kleenscan

Compiler Overview: Clang++ (Mingw64 GNU)

• Compiler Type: Clang, a C/C++ compiler front end that can work with various back ends,

including GCC.

• Purpose: Compiles C and C++ source code into executables and supports multiple platforms.

• Platform: Primarily used for Windows development but can cross-compile for other platforms.

• Language Support: Primarily C and C++ but supports other languages.

• Extensions: Leverages the GNU toolchain with its language extensions.

clang++.exe –o gregsbestfriend.exe gregsbestfriend.cpp

Base Clang++ (Mingw64 GNU) Detections

Base Clang++ (Mingw64 GNU) - Kleenscan

Compiler Overview: g++ (GNU Compiler Collection for C++)

 • Compiler Type: Part of the GNU Compiler Collection (GCC), specialized for compiling C++ code.

• Purpose: Compiles C++ source code into executables and shared libraries.

• Development Environment: Command-line toolset used in various IDEs and build systems.

• Platform: Supports multiple platforms, including Unix-like systems and Windows.

• Usage: Popular among C++ developers for open-source and commercial software development.

G++.exe –o gregsbestfriend.exe gregsbestfriend.cpp

Base g++ (Mingw64 GNU) Detections

Base g++ (Mingw64 GNU) - Kleenscan

Optimization for Evasion: Outsmarting Detection Rates

Introduction
• Optimization is a strategic weapon in the realm of evasion.
• Elevating code efficiency can assist in evading detection by security systems.

Why Optimize for Evasion?
• Stealthiness: Optimized code can hide malicious intent more effectively.
• Rapid Execution: Faster execution reduces the detection window.
• Countermeasures: Evading signature-based and behavioral detection.

Optimization for Evasion: Outsmarting Detection Rates

Optimization Techniques for Evasion
• Polymorphism: Code changes appearance without altering functionality.
• Code Compression: Reduce the size of executable payloads.
• Code Splitting: Divide code across multiple files or stages.
• Dynamic Behavior: Adaptive code that morphs during execution.
• Anti-Analysis: Code obfuscation to thwart reverse engineering.

Compiler-Aware Evasion
• Leverage compiler-specific optimizations.
• Customize code generation for specific targets.
• Explore non-standard compiler flags for evasion.
• Code Size Reduction

Optimized Cl.exe (MSVC)

• /O2 - Maximize Speed: Optimize code for maximum runtime performance.
• /Ob2 - Inline Functions: Expand small functions for improved performance.
• /Os - Optimize for Size: Prioritize smaller executable size.
• /Gs- - Disable Security Checks: Turn off buffer security checks (use with caution).
• /Zi - Generate Debug Info: Create debugging information for debugging purposes.
• /EHsc- - Disable Exception Handling: Turn off C++ exception handling.
• /GL - Link-Time Code Generation: Perform cross-module optimization during linking.
• /GF - String Pooling: Consolidate identical string literals for efficiency.
• /Gy - Function-Level Linking: Remove unreferenced functions to reduce size.
• /GA - Windows Application: Optimize for building Windows applications.

cl.exe /O2 /Ob2 /Os /Gs- /Zi /EHsc- /GL /Os /GF /Gy /GA GregsBestFriend.cpp

Optimized Cl.exe (MSVC) Detections

Optimized Cl.exe (MSVC) Detections - Kleenscan

Optimized Clang++ LLVM

• -O2: Optimize the code for speed (level 2).
• -Ob2: Apply aggressive optimizations for better performance.
• -Os: Optimize for a smaller program size.
• -fno-stack-protector: Turn off stack protection for better control.
• -Xlinker -pdb:none: Exclude debugging information (PDB file).
• -Xlinker -subsystem:console: Set the program to run in the console.
• -o GregsBestFriend.exe: Name the output program "GregsBestFriend.exe".
• GregsBestFriend.cpp: The source code file to compile.
• -luser32 -lkernel32: Link with user32.dll and kernel32.dll libraries.
• -fno-unroll-loops: Keep loops as they are, don't unroll them.
• -fno-exceptions: Turn off C++ exceptions for simpler code.
• -fno-rtti: Disable Run-Time Type Information (RTTI) for smaller code.

clang++.exe -O2 -Ob2 -Os -fno-stack-protector -Xlinker -pdb:none -Xlinker -
subsystem:console -o GregsBestFriend.exe GregsBestFriend.cpp -luser32 -lkernel32 -
fno-unroll-loops -fno-exceptions -fno-rtti

Optimized Clang++ LLVM Detections

Optimized Clang++ (LLVM) Detections - Kleenscan

Optimized Clang++ (Mingw64 GNU)

• -O2: Optimize the code for speed (level 2).
• -Ob2: Use aggressive optimizations for better performance.
• -Os: Optimize for a smaller program size.
• -fno-stack-protector: Disable stack protection for more control.
• -o GregsBestFriend.exe: Name the output program "GregsBestFriend.exe".
• GregsBestFriend.cpp: The source code file to compile.
• -luser32 -lkernel32: Link with user32.dll and kernel32.dll libraries.
• -fno-unroll-loops: Keep loops as they are, don't unroll them.
• -fno-exceptions: Turn off C++ exceptions for simpler code.
• -fno-rtti: Disable Run-Time Type Information (RTTI) for smaller code.
• -s: Strip extra information for a smaller program.

clang++.exe -O2 -Ob2 -Os -fno-stack-protector -o GregsBestFriend.exe
GregsBestFriend.cpp -luser32 -lkernel32 -fno-unroll-loops -fno-exceptions -fno-rtti -s

Optimized Clang++ (GNU) Detections

Optimized Clang++ (GNU) Detections - Kleenscan

Optimized g++ (Mingw64 GNU)

• -Os: Optimize the executable for size. This flag tells g++ to prioritize reducing the size of the

generated code over its execution speed.
• -s: Strip the executable of all symbol table and relocation information, reducing its size.

g++.exe -Os -s GregsBestFriend.cpp -o GregsBestFriend.exe

Optimized g++ Mingw64 Detections

Optimized g++ (GNU) Detections - Kleenscan

Compiler Detection Results
cl.exe (Microsoft Visual C++)
• VirusTotal: Detected by 22 out of 71 antivirus engines.
• Kleenscan: Detected by 15 out of 40 scanning. Engines

clang++.exe (LLVM)
• VirusTotal: Detected by 29 out of 71 antivirus engines.
• Kleenscan: Detected by 14 out of 40 scanning engines.

clang++.exe (GNU)
• VirusTotal: Detected by 27 out of 71 antivirus engines.
• Kleenscan: Detected by 15 out of 40 scanning engines.

g++ (GNU)
• VirusTotal: Detected by 27 out of 71 antivirus engines.
• Kleenscan: Detected by 15 out of 40 scanning engines.

The Break Down

Testing Context
• All previous tests and results have used unencoded shellcode.

Why Unencoded?
• Simplicity: Unencoded shellcode helps focus on compiler and detection aspects.

Considerations
• In real scenarios, shellcode may be encoded for evasion.

Let's Encode!
Updated Shikata ga nai – SGN.EXE

Custom XOR encoding with header injection:

Encoded Clang++ LLVM Detections

Encoded clang.exe (LLVM) Detections

Encoded CL.exe (MSVC) Detections

Encoded CL.exe (MSVC) Detections

Encoded Clang++ GNU Detections

Encoded clang.exe (GNU) Detections

Encoded g++ GNU Detections

Encoded g++ (GNU) Detections

Encoded Compiler Detection Results
cl.exe (Microsoft Visual C++)
• VirusTotal: Detected by 10 out of 71 antivirus engines.
• Kleenscan: Detected by 0 out of 40 scanning. Engines

clang++.exe (LLVM)
• VirusTotal: Detected by 4 out of 71 antivirus engines.
• Kleenscan: Detected by 0 out of 40 scanning engines.

clang++.exe (GNU)
• VirusTotal: Detected by 4 out of 71 antivirus engines.
• Kleenscan: Detected by 0 out of 40 scanning engines.

g++ (GNU)
• VirusTotal: Detected by 5 out of 71 antivirus engines.
• Kleenscan: Detected by 0 out of 40 scanning engines.

Advanced Techniques

Resource Injection

• Embedding icons, images, and other resources makes your binary look more professional and
legitimate.

• Evasion of detection mechanisms becomes easier when your binary looks legitimate.

Injecting Shellcode into Resources

• Conceal shellcode within resources to bypass traditional detection.

Advantages

• Stealthy execution.
• Evasion of detection mechanisms.

What is a Resource File?

What is a Resource File?
• A resource file is a special file used to store non-code assets for your program.

What's Inside?
• It contains things like icons, images, text, and other data your program needs.

Why Use It?
• Resource files make it easy to manage and access these assets in your program.

Examples
• Icons: Store program icons.
• Images: Include images for user interfaces.
• Text: Keep text translations or help messages.

Is it that easy to just add metadata to
your build process?

Building Resource Files

Using .res Files

Method 1: rc.exe (Microsoft)
• Compile .rc files into .res files.
• Example: rc.exe /r /fo myresources.res myresources.rc

Method 2: windres (GNU)
• Generate .res files from .rc scripts.
• Example: windres -o myresources.res myresources.rc

Building Resource Files

Using .o (Object) Files

Method 1: rc.exe (Microsoft)
• Compile .rc files into .o files.
• Example: rc.exe /fo myresources.o myresources.rc

Method 2: windres (GNU)
• Create .o files from .rc scripts.
• Example: windres -o myresources.o myresources.rc

Building Resource Files

Difference Between .res and .o Files

.res Files
• Used primarily on Windows.
• Store non-code resources.
• Examples: icons, images, data.

.o Files
• Commonly used in Unix-like systems.
• Object files that can be linked with code.
• Contain resource data.

Its starting to look like a
legit application.

Adding Shellcode to Resource Files

Build Command:

clang++.exe" -O2 -Ob2 -Os -fno-stack-protector -g
-Xlinker -pdb:none -Xlinker -subsystem:console -o
GregsBestFriend.exe GregsBestFriend.cpp
resource2.res -luser32 -lkernel32 -fno-unroll-loops
-fno-exceptions -fno-rtti

Let’s Test It! – CrowdStrike

Let’s Test It! – Sophos XDR

Let’s Test It! – SentinelOne

Encoded Compiler Detection Results

cl.exe (Microsoft Visual C++)

• Sophos: Not Detected.
• Crowdstrike: Not Detected.
• SentinelOne: Not Detected.

clang++.exe (LLVM)

• Sophos: Not detected.
• Crowdstrike: Not detected.
• SentinelOne: Not detected.

clang++.exe (GNU)

• Sophos: Not detected.
• Crowdstrike: Not detected.
• SentinelOne: Not detected.

g++ (GNU)

• Sophos: Not detected.
• Crowdstrike: Not detected.
• SentinelOne: Not detected.

Let’s Go Further!

Obfuscating Shellcode Storage in Resource Fields

FileDescription Field
• Normally used to describe the file's purpose.

ProductName Field
• Typically contains the product's name.

LegalCopyright Field
• Usually includes copyright information.

File Description Clang++ LLVM Detections

Further Enchantments For Development

• Blending in with common APIs and functions

• Breaking away from common shellcode loading chains (Doing something

different)

• Exploring different compilers beyond the listed ones

• Making your binaries appear legitimate, blending them in

• Consideration of Syscalls

Join the WKL Discord

Connect With Us!

LinkedIn – John Stigerwalt

WKL Website

Q&A

Questions?

